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Abstract

A gambler repeatedly plays a game until either he becomes broke or his
fortune becomes equal to or exceeds a target amount. The gambler is allowed
to make multiple bets, i.e. stake integral amounts on different alternatives of
the game, and more than one bet may win simultaneously. The objective is to
determine a strategy that maximizes the probability of attaining the target
amount. When all bets have the same gain and alternatives of betting exist
such that the relevant plays are feasible, the following results are obtained. For
unfavorable games, a bold type of policy is shown to be optimal. A timed type of
policy is shown to be best within a restricted class of policies for favorable
games. In general, optimal policies contain multiple bets. Based on a numerical
example, this is established for roulette also.

DYNAMIC PROGRAMMING

1. Introduction

A gambler desires to increase his fortune from an initial amount i >0 to a
larger amount N. He repeatedly plays a game until either he becomes broke or
his fortune becomes equal to or exceeds the target fortune. The game offers
many alternatives of betting. At each play, the gambler can stake any positive
integral amount not greater than his current fortune. He is allowed to make
multiple bets, that is, he can stake different amounts on different alternatives of
the game, and more than one bet may win simultaneously. The gambler wants
to determine the optimal way of betting such that he maximizes the probability
of attaining his goal.

To define the game, let X be a random variable taking values in the set
S={1,2,---, s} such that P{X =s}=p.. Let € be a class of subsets of S, that
is, €={A,, A,,- -+, A,} together with positive integers k,, k,, - -, k, such
that odds k;: 1 are offered on the event {Xe€ A}, j=1,2, -, n. The game is
played by betting non-negative integral amounts a,, a,, - - -, @, on the events
{XeA,},---,{XeA,} respectively. Bet j wins if the event {X € A} is reatized.

Received 19 July 1983; revision received 26 April 1984.
* Postal address: Department of Applied Mathematics and Statistics, State University of New
York at Stony Brook, Stony Brook, NY 11794, USA.

298



The structure of bold and timid policies 299

The corresponding probability is:p; =Y. p; and the expected gain per unit
amount staked is g;=kp,—(1—p;), j=1,2,---,n. We speak of a gamble
(action) a =(ay, a,," "+, a,). Let K; denote the set of all gambles available
when the current fortune is i; K;={a=(a,,"--,a,):1=}],q;=i, q;=0,
integer}. A gamble a is called simple if exactly one of the g;’s is not equal to 0.
Let K? denote the set of simple gambles available when the current fortune is i.

A policy is a rule for selecting gambles in a sequence of independent
repetitions (plays) of the game. A deterministic policy chooses gambles as a
deterministic function of the fortune only. A deterministic policy which always
chooses simple gambles will be called a simple policy. Let C, and Cp denote
the classes of deterministic and simple policies respectively.

All alternatives, A,;, with identical odds, k;, are said to correspond to the
same option of betting. We say that an option with odds k is available if there
is at least one alternative with odds k. A bet on an option with odds k is a bet
on a single alternative with odds k.

In Section 2, we formulate this problem as the optimal first-passage problem
in Derman (1970), p. 28. Immediate consequences of this formulation are: (i)
Only deterministic policies need to be considered as candidates for the optimal
policy. (ii) Optimality can be proven by establishing a set of optimality
equations. (iii) Policy improvement, linear programming and successive ap-

proximations algorithms can be used to obtain optimal policies.
In Sections 3 and 4, it is assumed that all alternatives of the game have the

same expected gain per unit amount staked, that is, g; = g for every j. Equival-
ently, for C=g+1, it is assumed that

€
(1) pj_ms

We say that the game is favorable if C>1, unfavorable if C<1 and fair if
C=1.

From (1), all alternatives corresponding to the same option of betting have
the same odds and probability of winning. For convenience, we refer to the
probability of winning of any alternative with odds k as p,. It is given by

2
2 D =——— .
@ k+1

It is expedient to describe simple policies in terms of bets on options rather
than bets on particular alternatives of the game. Two simple policies are of
interest: (i) The first policy always employs a bet of 1 unit on the option with
odds 1. We call it the timid policy. (ii) The second policy, when the current
fortune is i, employs a bet of 1 unit on the option with odds N —i. We call it the
bold policy. Note that these policies are uniquely defined up to the option of
betting only.

=127~
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The results of Sections 3 and 4 are the following: (i) For unfavorable games,
under the additional assumption that options with odds k are available for all
k=1,2,---,N—1, it is shown that the bold policy is the unique optimal
policy. (ii) If an option with odds 1 is available then it is shown that the timid
policy is the best policy within the class of simple policies for favorable games.
We give an example which shows that the timid policy is not optimal if multiple
bets are allowed.

In Section 5 we consider roulette. We give a numerical example for which
the best simple policy (which is obtained using policy improvement) is not
overall optimal. Thus, it follows that optimal policies, in general, contain
multiple bets and therefore are difficult to characterize.

The problem of optimal gambling in roulette has been considered by Smith
(1967) and Dubins (1968) under the assumption that the gambler is allowed to
bet any fraction of his fortune on alternatives of the form {X = i}, i€ S only.
This class of policies has the property that if a bet on an alternative {X=j,}
wins, all other bets will lose. This property is used to show that a bold policy is
optimal. In our gambling model, bets on more than one alternative may win
simultaneously; for example consider bets on alternatives of the form A=
{i, 2t Az={js, ja}, etc. This general class of gambling policies has been
considered by Breiman (1961). Breiman also allows the gambler to bet any
fraction of his fortune and considers only those games in which there exists a
policy such that the gambler’s fortune almost surely increases without bound
(favorable games). He considers two criteria. The first is to minimize the
expected number of trials needed to reach or exceed a target fortune. The
second is to maximize the fortune after a fixed number of trials. In either case,
he obtains characterizations for optimal policies.

Another criterion is to maximize the gambler’s playing time till he becomes
broke. Freedman (1967), Molenaar and Van Der Velde (1967) and Ross
(1974) have shown that a timid policy is optimal in various favorable situations.

2. Preliminaries

Let A; = A;(X) be the indicator function of the event {XeA}, 1=j=n. We
define the random variable A=(A,, - - -, A,), then D ={0, 1}" is the range of A.
For any 8 €D, let p(8) =p(A=8). If gamble a is placed when the current
fortune is i, 1=i=N-—1, then with probability p(8) the new fortune will be

3) ji,a,8) =i+ ‘Z ;a;k; — i (1-8))a; =i+ i 8;a;(k; +1)—|al.
i=1 i=1 i=1

In (3), la|=%, g; is the total amount gambled; |a|=<i. Finally, let I(i, @) =
i—|a|+1.
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Remark 1.
(i) The p(8), 8D, can be obtained as follows. Define B(8)=

(N:5,=1 A) NUi:5,-0 A)°.

Then
p(8)=P(XeB@®)= 2, p.
seB(8)

(ii)

@) Y p@)=1
8D v
) Y p@=Y 8p@®=p 1=j=n
seD:§,=1 8D

Using standard Markov decision theory arguments, Derman (1970), a
deterministic policy R* is optimal if and only if

lIA

Y p(8)f“'(j(i,a,8))} 1=i=N-1

8D

©) () =max {
ack
where fR°(i) denotes the first-passage probability to the set of states {N, N+
1, - - -} given that the initial state is i, 1=i =N—1, and policy R* is employed.
A simple policy R® is optimal within the class of simple policies if the f ROi)
satisfy (6) with K; replaced by K7, 1=i=N—1. Let

(7 di@i)=f@)—f@i—1) 1=i=N-1
and

T(,a)= Y, p(®)f(j(ia,8), 1=i=N-1,ackK.

8eD

Here, and in subsequent sections, the superscript denoting the policy will be
omitted for notational simplicity. In the following lemma, the expressions
T(i, @) which appear in (6), are shown to be equal to a weighted sum of the
differences d(i), with the weights non-increasing in i. This result is true for all
deterministic policies and all feasible gambles.

Lemma 1. Assume that condition (1) holds. Then for any i, 1=i=N-1 and
any a, a € K;, there exist constants b, = b,(i, @), I(i,a)=r=N, such that

N

bl(i.a);bl(i,aﬂ-lg. ’ 'ébNZO, Z b,él
r=I1(i,a)

and N

TG, a)—f(i—|la)=Clal X bd().

r=I1(i,a)

Proof. Using (4) and (7)

ii,a,8)
® TG.a)—fi—lah= T p@®(GG a8)—fG-lah)= T p@) 3 d(.

8eD 8D r=Il(i,a)
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To interchange the order of summation in (8), define
9) D,=D,(i,a)={8€D:j(i,8,a)=r}, r=IG,a), --,N.
Note that Dy < Dy_1 S * - S Dy Let
i, =max j(i, a, §).
8eD
Now (8) can be written as

iu
TG, a)-f(i—la)= Y, d(r) Y p(®).

r=I(i,a) 8eD,
If iy <N, then D, =@ and Y;.p, p(§)=0 for r=i,+1,--,N. Also d(r)=0
for r> N. Hence h

(10) TG,a)—f(i—|la)=Cla| Y d(r)b,

r=1(i,a)
where b, = (1/C |a|) Y scp, p(8). It follows from (9) that
biGayZ b1 a)+1 =+ - = by =0.

To show that the sum of the b,’s is less than or equal to 1, substitute d(r)=1

for every r in (8) and (10). Since all terms containing d(r), r> N, are excluded
in (10), it follows that

Sy ZD b3 S 1

r=l(i,a) r=l(i,a)

Il/\

n','_ .

Z Z 8;(k; +1)a;

a;(k;+1) Y, 8,p(8)=

1
a( +1)
R Claj,& %%+ Dp

g‘:
Clag

where the first equation follows from (3), the third from (5) and the last two
equations from (2) and the definition of |a.
The proof of Lemma 1 is complete.

The next lemma will be used in the following section. The proof is simple
and is omitted.

Lemma 2. ¥ d,,>d,,_,>--->d,;>0;0=b,, =b,1=--'=bjand Y™, b, =
1 then

with equality holding if and only if b, = 1/m for r= o BCLE R
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3. The unfavorable case (C<1)

The bold policy has been defined as the simple policy which in state i bets
one unit on the option with odds N—i, 1=i=N-—1. Here we assume that
options with odds 1,2,---,N—1 exist. For this policy, the first-passage
probabilities satisfy

(11) f@)=pn-f(N)+(A—pni)f(—-1), i=12,---,N-1L
The unique solution to the system of equations given above is
(12) foy=1-T1 a-pny), i=1,2,---,N-1.

ji=1
The next lemma follows from (11) and (12).

Lemma 3.
(i) d@i+1)>d(), i=1,2,---,N-1

Cm <

11 iy — f(i — = e : f =2 . &i%.s —_1e
(i) f()—fG m)_N_Hm'_:i_Zde(J), =30 N 1;
with equality holding if and only if m = 1.

Proof. (i) The first part follows from (12) and the fact that C<1.
(ii)) From (11),

fi—m+1)=pnism-f(N)+(1— Pn-i+m-f(i —m)

equivalently, using (2) and (7),
C N
f(i—m+1)—f(i—m)=mj=i§+l d(j).
By repeated application of (i), we obtain that
f@—fi—m)=zm[fi—m+1)—fi—m)]
with equality holding if and only if m =1, and the result follows.

Remark 2. Substituting m =1 in Lemma 3 (ii), it follows that in state i the
b,’s corresponding to the gamble prescribed by the bold policy are all equal to
1/(N—i+1). It is easy to see that a simple gamble in state i of 1 unit on any
option with odds not equal to N—i does not have this property.

Theorem 1. If options with odds 1,2, - -, N—1 are available, then the bold
policy is the unique (up to bets on the same option) optimal policy for the
unfavorable case.
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Proof. 1t suffices to show that
f@)> TG, a), U 12w N
for all alternative gambles a € K; such that a is not equal to a gamble

prescribed by the bold policy. From Lemma 1 we have that

N

TG,a)—f(i—|a)=Cla| Y, bd().

r=l(i,a)
From Lemma 3 (ii), for m =|a|, we have that

f)-fa-la)=Clal——— Y d()

N-i+ Ial r=I(i,a)

with equality holding if and only if |a|= 1. Finally, from Lemma 2,

1 N N
TR dir)= b
=%k |a| r=§i.¢) (r) r-gi.a) rd(r)

with equality holding if and only if b, = 1/(N—i+|a|) for every r. The proof is
complete if we note that for |a|=1, the only gambles for which b, =
1/(N—i+|a|) for every r are the ones prescribed by the bold policy.

4. The favorable case (C>1) and the fair case (C=1)

If an option with odds 1 is available, the timid policy is feasible. Under this
policy the first-passage probabilities are given by

~_1-p :
(13) f(1)=1_pN, i=1,2,---,N-1
where
l—ﬁl 2_C
14 =—=
(14) P 5, C

A simple gamble consists of one non-zero bet, say bet 1. The only possible
outcomes are whether this bet wins or loses. Thus, the timid policy is the best
policy within the class of simple policies if

fAO=pf(i+ak)+(A—-p)f(i—a), i=1,2,---,N—1;
a=1,2,---,i; foreveryk.

(15)

These inequalities are a special case of (7).

Theorem 2. If the option with odds 1 is available, the timid policy is the
unique (up to bets on the same option) optimal policy within the class of simple
policies for the favorable case.
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Proof. Equations (13) and (14) imply that (15) can be written as
(k+1(1—p*)—2(1—p** "™ V)/(1+p)=0.

Now, in the favorable case, C>1 thus p<1 and the preceding inequality is
easily confirmed to hold for k = 1. The other cases follow as the left-hand side
is increasing in k.

The following example shows that when multiple bets are allowed the timid
policy is not optimal in general.

Assume that alternatives A,, A, have odds k; =k,=1 and that A;UA,=S.
Since the game is favorable, A, N A, # & and it therefore follows that a unit
bet on A, and A, cannot lead to a loss and, with positive probability, may lead
to a profit.

Remark 3. For the fair case, all policies which prescribe gambles a in state i
such that j(i,a, 8)=N for every 8€ D, result in identical first-passage prob-
abilities. To see this, notice that for the timid policy

fi)=n, i=12+,N-1,
as obtained from the gambler’s ruin model. It follows that

d(i)=d(i—1), i=2,3,---,N

and the optimality equations (6) are satisfied as equalities for every gamble
ac K% where

K*={a€cK;:j(i,a, 8) =N for every & € D}.

5. Roulette

The rules for playing roulette are given in Scarne (1961). Briefly, using the
notation of our gambling model, S ={00, 0, 1, - - -, 36} with p;=1/38 for every
s€S. There are nine options of betting available, as summarized in Table 1.
Only the fifth option does not satisfy Equations (2).

The odds corresponding to the ninth option cannot be written as k:1 for
some positive integer k. This introduces the possibility of winning non-integral
amounts. Therefore, we stipulate that only bets of even amounts can be placed
on the alternatives of the game corresponding to the ninth option.

We have used the policy improvement algorithm to solve numerically for the
best simple policy. The solution for N = 10 is given in Table 2 and will be used
to show that the optimal policy, in general, consists of multiple bets. In Table
2, we also list the first-passage probabilities corresponding to the timid and the
bold policies with C =36/38. Note that the timid policy corresponds to bets on
red or black in roulette. The bold policy is not feasible except for N=3.
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TABLE 1
Options of betting in roulette

numbers  probability

expected return per

option bet on of winning odds unit amount bet
1 1 1/38 35:1 36/38
2 2 2/38 1721 36/38
3 3 3/38 11:1 36/38
4 4 4/38 8:1 36/38
5 S 5/38 6:1 35/38
6 6 6/38 5:1 36/38
7 12 12/38 2:1 36/38
8 18 18/38 1< 36/38
9 24 24/38 1:1 36/38

However, it provides an upper bound for the first-passage probabilities since it
assumes that options with odds 1,2, -+, N—1 exist each with an expected
return per unit amount bet, C, equal to 36/38.

The following example shows that the best simple policy obtained above is

not overall optimal.

Let A;={1,2,---,6}and A,={1,2, -+, 12}. From Table 1, since bet 1 is a
bet on six numbers, k=35, similarly, k, =2. In state 3, consider the gamble
(1,1) where, for simplicity, we assume that C={A,, A,}. Let 8,=(1,1),
8,=(1,0), 8;=(0,1) and 8,=(0, 0). Then, p(8,) =6/38, p(8,) =0, p(85) =6/38
and p(8,) =26/38. The corresponding optimality inequality is

f(3)=6/38f(10)+6/38f(4) +26/38f(1).

Substitution of the values from Table 2 shows that this inequality is violated.

TABLE 2
The best simple policy for N=10 and the first-passage
probabilities corresponding to the timid and the bold

policies.

best simple policy
amount bet on timid bold
state i staked odds f(i) policy  policy
1 1 8:1 0-09288 0-05948 0-09474
2 1 8:1 0-18837 0-12557 0-19003
3 1 Sl 0-28123 0-19901 0-28595
4 3 2:1  0-37934 0-28060 0-38258
5 1 Szl 0-47734 0-37126 0-48007
6 2 21 0-57534 0-47200 0-57858
7/ 3 10l 0-67334 0-58392 0-67839
8 2 1 Rl 0-77649 0-70829 0-77996
9 1 1:1 0.88236 0.84647 0.88419
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