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OPTIMAL ADAPTIVE POLICIES FOR MARKOV
DECISION PROCESSES

APOSTOLOS N. BURNETAS axp MICHAEIL N. KATEHAKIS

In this paper we consider the problem of adaptive contro} for Markov Decision Processes.
We give the explicit form for a class of adaptive policies that possess optimal increase rate
properties for the total expected finite horizon reward, under sufficient assumptions of finite
state-action spaces and irreducibility of the transition law. A main feature of the proposed
policies is that the choice of actions, at each state and time period, is based on indices that
are inflations of the right-hand side of the estimated average reward optimality equations.

1. Introduction. Consider a finite state and action Markovian Decision Process
(MDP) with incomplete information. Under an irreducibility assumption for the
unknown transition law, it is shown in Theorem 1 that there exists a class Cp of
adaptive policies with optimal increase rate properties of the expected finite horizon
reward, or equivalently optimal convergence properties of the expected average
reward.

The ideas involved in this paper are a natural generalization of the work on the
multi-armed bandit (MAB) problem in Lai and Robbins (1985a), Katehakis and
Robbins (1995) and Burnetas and Katehakis (1996). The MAB problem, in the form
studied therein, can be viewed as a one state MDP, with actions representing the
population sampled in a period, and expected rewards that depend on unknown
parameters. In Lai and Robbins (1985a), policies with the same optimality properties
are obtained when for each population the rewards are generated by a density that
depends on a single unknown parameter, as is the case of a single parameter
exponential family. Simpler index policies were shown to be optimal in Katehakis and
Robbins (1995), in the case of normal densities with known variance, and in Burnetas
and Katehakis (1996), when rewards are generated by densities that depend on a
vector of parameters, such as an arbitrary discrete distribution with known support.

The novel approach of this paper lies in the direct treatment of the Markov
dynamics and the resulting form of an optimal policy that utilizes the state-action
generated information efficiently. In addition, the parameter space is not restricted to
be finite, and the transition law is assumed to be unknown except for its support. In
previous related work the MDP model has been viewed as a bandit problem, with one
bandit for each deterministic policy that is used over specified time intervals, such as
the time between successive visits to a recurrent state; the single unknown parameter
for each bandit being the average reward of the deterministic policy it represents.
This was the approach taken in Fox and Rolph (1973), who first obtained “consistent”
policies (i.e., policies for which the expected average reward converges to the optimal
under the true unknown transition law) for MDPs using Robbins (1952), and in
Agrawal, Teneketzis and Anantharam (1989a), Shimkin and Shwartz (1996) where
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OPTIMAL ADAPTIVE POLICIES 223

adaptive policies with optimal increase rate were obtained for MDP and repeated
games, respectively, using Lai and Robbins (1985a).

In comparison to the approach taken herein, that in Agrawal et al. (1989a) allows
coupling between the uncertainties for different actions and states. However, it
requires a combinatorial number of bandits and it places restrictions on the use of the
state-action dependent information collected, which are necessary to maintain the
independence of the bandits required by the MAB model of Lai and Robbins (1985a).
These restrictions are termed “black box approach” in Lai and Yakowitz (1995),
where a (non—Markov) Decision Process is also viewed as a MAB. A similar approach
is followed by Graves and Lai (1995) for compact parameter spaces, general state
spaces, and action sets while still assuming finiteness of the set of deterministic
policies.

A direct treatment of the coupling between states and uncertainties along the lines
of this paper is one of the interesting open probiems in this area. Computation results
and conjectures for the MDP problem with side constraints are contained in Burnetas
and Katehakis (1995).

Other related work on the “multi-armed bandit” version of this problem includes
the following: Chernoff (1967), Gittins (1979), Whittle (1980), Glazebrook (1991). For
the problem of MDPs with incomplete information, consistent policies have been
shown to exist under various conditions; c.f., Mandi (1974), Federgruen and Schweitzer
(1981), Kolonko (1982), Kumar and Varaiya (1986a), Hernandez-Lerma {1989),
Ferndndez-Gaucherand, Arapostathis and Marcus (1993) and references therein. For
adaptive policies with suboptimal increase rates we refer to Agrawal (1990) and
references therein. For additional references on incomplete information MDP prob-
lems, cf., Anantharam, Varaiya and Walrand (1987), Agrawal, Tencketzis and
Anantharam (1989b), Anantharam et al. (1987), Borkar and Varaiya (1979), Kumar
and Varaiya (1986b), Rieder (1975), Van Hee (1980), Schil (1987), Milito and Cruz,
Jr. (1992), White and Eldeib (1994) and Rieder and Weishaupt (1995).

The main result is stated and proved under the minimal and easy to verify
assumptions of Markov dynamics, finite state and action spaces and observable
irreducibility of the unknown transition law. These conditions can be relaxed when
one makes more general modeling assumptions as in Mallows and Robbins (1964).
For example, policies in Cy will have N-horizon regret of the order O(log N) when
the state space is countable and even if the dynamics are not necessarily Markov
provided that assumptions for: (i) the existence of limits of the estimates employed
and (ii) the claims of Propositions 3, 4, and 5, of §6, hold; see remark in Katehakis
and Robbins (1995) for the case of the MAB problem. This type of conditions are
discussed in Lai and Yakowitz (1995).

To make the key ideas clear, we chose to restrict the discussion in §§2 to 6 to the
casc where the rewards are known, and the transition law is unknown; the modifica-
tions required for models with unknown reward structure are discussed in §7. In §2
we present the model and background on average reward MDPs. In §3 we construct
the class of index policies and state the main theorem of the paper. Although the
subsequent proofs are sometimes involved, it is very easy to compute and implement
a policy in Cy. In §4 we obtain an expression for the N-horizon regret, and establish a
large deviations type result that is used in the sequel. In §5 we show that for all
policies with uniformly “fast” convergence properties the regret has an asymptotic
lower bound. In §6 we prove that any policy in the index class attains this lower
bound. In §7 we consider the following generalizations to the case of unknown
rewards: In the first, the one step reward is a function of the current state and action
and the next state visited, i.e., the expected one step reward is a function of the
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224 A. N. BURNETAS AND M. N. KATEHAKIS

transition probabilities. In the second, the one step reward is independent of the next
state, but also random, with a distribution that depends on unknown parameters. We
also present the solution to the multi-armed bandit problem with discrete distribu-
tions. Proofs of intermediate lemmata are given in Appendix A; explanatory examples
involving two and three state MDPs are given in Appendix B.

2. The incomplete information model. Consider a discrete time, finite state and
action space MDP described by the quadruplet (S, A, R, P),where § = {1,2,...,s}is
the state space, 4 = U, sA(x) is the action space, with A(x) being the set of
admissible actions in state x, R = [r{x, @], s sc Aq» i the reward structure and
P=1[p. &), es cc e is the transition law. The transition probability vectors p(a)
are unknown and belong to known sets &(x, a).

The statistical framework used in the sequel is as follows.

(a) For any fixed state-action pair (x,a) such that a € A(x), let the discrete
random variable Y,(x,a) € S denote the state visited immediately after the jth
occurrence of (x, @). From the Markov property, Y,(x,a), j = 1,2,... are iid. with
distribution p(a). Let (%), &) denote the sample space of a realization
(Yx,a),...,Y(x,a)), 1 <n < For any probability vector pla) € B(x, a), let
P, (o) be the probability measure on B generated by p,(a) and B, the measure
on B") generated by n independent replications of Yi(x, a). In the sequel P, will
often be abbreviated by P, . Expectations under p,(a) will be denoted by E, ).

(b) Let the random variables X,, 4, t = 0,1,... denote respectively the state of
the process and the action taken in period ¢. A history , is any feasible sequence of
states and actions during the first k time periods, o, = X, dg, .. Y15 Ap—15 g
such that a, € A(x), t = 0,...,k — L. Let QP 7 1 < k < = denote the sample
space of histories w,, where Q*) is the set of all histories w; and & ® the o-field
generated by ,. Events, defined on & *) are denoted by capital letters. The
complement of event B is denoted by B.

A policy m is defined as a sequence {m;} of probability measures on A=
U, A(x) given o, such that 7 A(X,)lw,) = 1, for all periods k = 0 and histo-
ries w,. It represents a randomized law of selecting actions based on the entire
observed history and the parameters of the problem. A policy 7 is adaptive if
m(lw,) does not depend on knowledge of P. A policy 7 is deterministic if there
exists a function f:S — 4, k= 0,1,..., with f(x) € A(x), being the action taken in
state x = X, for all k and w,. In this case 7 will be denoted by f. There is a
one-to-one correspondence between the vectors in the product of the actions sets:
o = T1, o ¢A(x) and the deterministic policies, thus for simplicity & will also denote
the class of the latter. The set of all policies will be denoted by C.

Probability and expectation under transition law P, policy 7 € C and starting state
x, will be denoted by P P ET P For notational expedience we may use the symbols
7w(k) and 7(w,) to denote the actions 4, taken under a policy .

(c) Given a history w,, let T,(x, @) denote the number of occurrences of the pair
(x,a) up to period k. Assume that there are estimators pr=a(g) =
DY x,a), ..., Y7 (X, @), k=0, of the transition probability vectors p,(a), with
pY arbitrary unless otherwise specified.

Any strongly consistent estimation procedure that satisfies the claim of Lemma 4
and its support satisfies the requirements of assumption (A) below, is sufficient for
our analysis. Such an estimation procedure will be given in §2.3.

Remark 1. Note the distinction between the policy dependent (Q%), 5 ®, P7:")
and policy independent (%), &"), B".,) probability spaces. However, since pila)is

x,a? 20

a function of Y(x,a),...,Y{x, a) only, it is easy to see by conditioning, that the

-
|
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OPTIMAL ADAPTIVE POLICIES 225
following relations hold, for any sequence F(k,; x,a) € O(x, a), k, ¢ > 1,
PrP(pi9(a) € F(k, T (x,a); x,a), T(x,a) = 1)
<P, (Pi(a) € F(k,t; x,a)),
BT P (pi5D(a) € F(k, Ty(x,a); x, a))

<P,

(pi(a) € F(k,t; x,a) for some ¢ < k).

2.1. Unobservable quantities related to the process. In this section we state the
assumption regarding the parameter space of the unknown transition law and define
several unobservable constants and sets, such as expected rewards, optimality equa-
tions, sets of critical actions etc., that are used in the subsequent analysis.

() Transition law and parameter space. Let P = | Pof@], es s denote the
unknown transition law. The parameter space for a probability vector p.(a)is:

O(x,a) = <q eR: Y g(y) =1,q(y) > 0,¥y € $*(x, a) and q(y)
yeS§

=0,V¥y & S+(x,a)},

where §™(x,a) = S*(x,a; P) = {y € S:p,fa) > 0}

All assumptions made in this paper are summarized below as

ASSUMPTION (A). ;

(1) The sets S, {A(x)}, 5 are finite and P €. = I, 0(x, a).

(2) For all x € S, a € A(x), the sets S*(x, a) are independent of P, known and
such that the transition matrices P(f) = | P (fO], <, are irreducible, for all
policies f €.

Reference to assumption (A) is made only in the main theorem, for emphasis. It
will be omitted in the statements of the propositions and lemmata, for simplicity.

If the parameter sets @(x, a) are restricted, by introducing additional information,
then one can find adaptive policies with bounded regret; such cases are discussed in
Lai and Robbins (1985b) for the MAB problem. The issue of how much of a
restriction is allowable without violating the claim of Theorem 1 is discussed, in the
context of the MAB problem, in Burnetas and Katehakis (1996); see necessary
conditions and Examples 1 to 3 therein.

(i) Expected rewards and regret. Let V7 (x,, P) = E7PEN X, A), Vilxg, P) =
Sup,, < c¥a7 (xg, P) denote respectively the expected total reward during the first N
transitions under policy 7, and the optimal N-horizon reward, as functions of P,ie.,
when “the true value P is known to the experimenter.” The loss or regret due to
incomplete information, incurred in the N-horizon when a policy = is used is
R (x, P) = Vi (x4, P) — ViZ(x,, P).

Let g7(xg, P) = liminfy , V7(x,, P)/N denote the long run expected average
reward under policy 7 and g*(x,, P) = lim, ., V,(x,, P)/N. The existence of the
last limit follows from standard dynamic programming results (Ross 1983).

(i) Optimality equations—restricted problems. For a collection {D(x) C A}, o,
let & =11,.sD(x) C, and define the restricted problem (P, &) as an MDP with
state space S, action sets {D(x), x € S} and with transition law and reward structure
given by the restrictions on 2 of P and R respectively.
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226 A. N. BURNETAS AND M. N. KATEHAKIS

Assumption (A) and standard MDP theory (c.f. Derman 1970, Ross 1983) imply
that there exist a constant g(P, &) = sup,, < ¢(eH8" (¥p, P) (independent of xpyand a
vector (P, @) = [h(x; P, D], < s (defined up to an additive constant) satisfying the
average reward optimality equations

2.1 g(P, ) +h(x;P,2) =2*(x; P,D), x€ES,
where

FH(x; P, D) = arEnDag(x>{3(x,a;px(a),h(P;Z))},

Hx,a:q,h) =r(x,a) +qh, gh = qu(y)h(y)
yE

and C(D) denotes the set of all policies for restricted problem (P, 2).

The set of deterministic policies of (P, @), will be denoted by 2. When 9 = {f},
we will use the abbreviations g(P) = g(P,{f}), h(P) = h(P,{f}.

Let O(x; P, @) = la € D(y): X (x, a; pLa), (P; D)) =*(x; P, D)} be the set
of maximizing actions in (2.1), and #(P,2) =11, sO(x; P, 7) be the set of
optimal deterministic policies for problem (P, <), ie., g(P)=g(P; 2), ¥Vfe
a(P, D).

Using this terminology, the solution of the average reward optimality equations for
the initial unrestricted problem is given by g*(P) = g(P, &) = sup,, . g7(P), h* {(P)
= W(P, &), Z*(x; P) =%*(x; P, &) and &(P) = &(P; ).

Let ¢*(x, a; P) =% (x; P) — Z(x, a; p(a), n*(P)) denote the test quantity of the
average reward optimality equations for the pair (x, a). Note that ¢*(x,a; P) > 0,
Vx, Va & O(x; P) and O(x, P) = {a € A(x): $*(x, a; P) = O}.

(v) Critical state—action pairs. (a) For (x,a) such that a & O(x; P) and for
g € 0(x,a), let Q = [0, ,(a)] € be a modification of the transition law P defined
as follows

) q(y), ifx=x,d=a,
Qx'y’(a) =

DPyy(d'), otherwise.

When we need io stress the dependence of Q on x, a, P, g, we will write it as
O(x, a;P, q).

(b) For (x, a) such that a & O(x; P), let A®(x, a; P) ={q:0(x; O(x, a; P, q) =
{a}}, denote the set of parameter values that make action a at state x uniquely
optimal and define the set of critical state-action pairs B(P), for any P €%, as
B(P) = {(x,a):a & O(x; P) and AB®(x, a; P) # T}

(© Let Kp,q) = &, c 5, P ol (3 /q(y)), denote the Kullback-Leibler in-
formation between vectors p, g € &(x, a).

(d) Let K(x, a; P) = infll( p (a), 9): g € AO(x, a; P)}. For any (x,a), K(x,a; P)is
zero if a € O(x; P); it is positive if (x, @) € B(P), and it is infinite otherwise.

(&) Let M(P) = T, nenpm®™(x, a3 P)/Kx, a; P).

In view of the foregoing definitions, a state-action pair (x, @) is critical if 4 is not an
optimal action in state x under transition law P, and there exists a vector g € O(x, @)
with the following property. If the transition probability row p,(a) is replaced with g,
while everything else remains unchanged, action a becomes the unique optimal
action for state x under this modified transition law Q(x, a; P).

......
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For a critical pair (x, a), K(x, a; P) denotes the minimum distance, in the sense of
Kullback-Leibler information, of the transition probability row p,(a) from the set
A®(x, a; P) of vectors g that would make a the optimal action for x. It is a measure
of the importance of critical pair (x, a), because, as it will be shown in Theorem 2, a
necessary condition for an adaptive policy to have a uniformly good behavior for ali
values of the unknown transition law, is that any critical pair (x, a) occurs a number
of times asymptotically equal to log N/K(x, a; P).

In this spirit, M(P) represents an aggregate measure of (estimation) importance of
all critical pairs for the MDP problem as a function of the transition law P. Its
relevance as such a measure is established by Theorem 1. Note that M(P) = 0 only in
the degenerate cases that all policies are optimal, i.e., ¢*(x, a; P) = 0, for all state
action pairs {(x, @), and /or when there are no critical pairs (B(P) = ), i.e., none of
nonoptimal actions can be made optimal by changing only its own transition probabil-
ity vector.

In Lemma 1 below we develop alternative characterizations for A®(x, a; P), and
B(P); they indicate the relationship of the critical state-action pairs with the average
reward optimality equations. From this it follows that for any (x, ) € B(P) the
computation of K(x, a; P) (as a function of P) involves the minimization of a convex
function subject to two linear constraints. The proof of the lemma is given in
Appendix A, and graphical illustrations are given in Appendix B.

LeMMA 1. For all P € % and (x, a) such that a & O(x; P), the following are true.
() AB(x, a; P) = {q € O(x, a): Hx, a;q, W*(P)) >F*(x; P)}.

(i) A®(x,a; P) # O, if and only if r(x, a) + max . ¢+, 0 n*(y; P) > Z*(x; P).

(iii) B(P) = {(x a): a & O(x; P), r(x, @) + max, . g, , #*(y; P) >2%(x; P)}.

2.2. Optimality criteria. Since V(x,, P) does not depend on 7, maximization of
V7 (x,, P) with respect to # is equivalent to minimization of R5(x,, P) = V(x,, P)
— ViZ{(x4, P). In general it is not possible to find an adaptive policy which minimizes
R7(xy, P) uniformly in P for any fixed N. However, the following definitions of
optimality can be used.

A policy 7 will be called uniformly fast convergent (UF) if R%(xy, P) = o(N®), as
N = o, VYa > 0,VP €2, Vx, € §.

A UF policy 7, will be called wuniformly maximum convergence rate (UM) if
limsupy . R7(xq, P))/R7(xy, P) < 1, VP €9 such that M(P) > 0, for all UF 1,
Vx, € 5.

Let Cp D C,, denote the classes of UF and UM policies respectively.

Because lim supy_, .. Ry(x,, P)/N = lim supy _, (Vy(xq, P) — Vi(xy, P)/N =
g*(P) — g(m, P) > 0, classes C, and C,, can be expressed in terms of the rate of
convergence of V¥ (x,, P)/N to g*(P) as follows.

If 7€ Cy, then (V7 (x,, P)/N — g*(P)| = o( N*"1), therefore Vi (xg, P)/N con-
verges to g*(P) faster than N*~!, VP €., Va > 0. Note that a UF policy is also
consistent in the sense of Robbms (1952) and Fox and Rolph (1973),
limy _, . Vi(xy, P)/N = g*(P). This follows from the definition of UF, with a = 1.

These definitions refer to properties with respect to the whole parameter space 2.
A UM policy is “best” (i.e., it has maximum rate of convergence) among “good” (i.e.,
UF) policies for all values of P &2 for which the unobservable M(P) is not equal to
zero. When M(P) = 0, a UM policy possesses the UF property (i.e., it is still “good”).
In Theorem 1 it is shown that UM policies exist by establishing that the class of index
policies Cp constructed in the next section are UM. In view of Theorem 1, the rate of
convergence for UM policies, is equal to M(P)log N/N when M(P) # 0, while if
M(P) = 0, R}(x,, P) = ollog N) as N — o for any UM policy .
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2.3. Estimators. Given a history w,, define the following statistics.

(@) Let T (x), T (x,a), T,x,y,a) denote the number of visits to state x, the
number of occurrences of the state-action pair (x, a) and the number of transitions
from x to y under action a, during the first k transitions, ie., T,(x) = XF7 1 Z.(x),
T (x,a) = T¢1Z(x,a) and T, (x,y,a) = T2 Z(x, y, a), where Z,(x) = KX, = x),
Z(x,0) =X, =x, A,=a)and Z(x,y,0) = UX,=x, A, =a, X,,, =)

(i) Let nfy; x, ) = Z_1(Y(x, @) = y), t > 1. Note that T,(x,y, @ =
Ny (x, o3 %, a).

(i) Let ft(y,x a)=nly;x,a)/t, for t = 1 and f(y; x, @) = 1/1S"(x, a)|, where
IS| denotes the cardinality of any set S.

(v) For ¢ = 0, let pi(a) =[p; ()], s, where p; (a) =0 if y & ST(x, @), other-
wise p; (@) = (1 — w)f(y; x, @) + w,f(y; x, @), Where w, =t/(1S*(x, a)| + 0).

) Let P*=| P 9(a)] denote the estimate of the transition law P, where we
suppress the dependence of plx>?(a) on Ti(x,y,a) for notational simplicity.

Note that under this estimation scheme, P* &€ 4, for all wy, k= 0.

3. Index policies and the main theorem. At any period k = 0, given a history w,,
with “current state” X, = x, we have an estimate P* for P. Using the estimate we
obtain the solution g* = g(Pk 2,), h* = h(P*, 2,) of the restricted problem
(P* , ). This problem is the observable MDP with transition law P* and with action
space &, equal to the product of the “relatively frequently sampled” action sets
(where log? b = (log b)*):

Di(x) =Dy(x: w,) = {a € A(x); T (x,a) > log? Ti(x)}, x€S8.

The index, U, of any action a € A(x) is defined as U(x, a; wy) =.2(x, a; p%(a), h%),
for k =0, and

(3.1) U(x,a;,) = sup [Z(x,a;9,0): 1 pT*9(a), q)
gEB{x,a)

<logk/T(x,a)}, ifk=1.

Let Ty(x; P*, 9) = {a € O(x; P*, 9, Ti(x, @) < log T.x) + 1}, and let
T(x; P*, 2,) = {a € A(x): Ulx, a; w;) = max,, = 40X, @5 @),

Define a class Cy, of index pohcles such that at any point of time k when the state
is x = X, the action taken is determined by the following rule.

(I) Solve the restricted problem (Pk 2,) and compute the set I',(x; P s D).

(I1) Take any action from [(x; P¥, @), if this set is equal to O(x P*, 2)),
otherwise compute the indices and take any action from the set T,(x; Pk » D)

To avoid repetitions we always assume that when j = 0 in a ratio of the form
log k/j, then the latter is equal to . In the sequel the discussion is simplified by the
use of the generic function

u, (p,h,y)= sup {F(x,a;q9,h):1(p,q) <}
q€6(x,q)

defined for all x, a and p,g € &{(x,a), h € R*, 0 < y < =, and such that U(x, a; w,)
=u, (plx “)(a) k¥ log k /T, (x, a)).

We next discuss the main ideas involved in the definition of the index policies. In
every period, the estimated transition law can in principle be used to solve a set of
average reward optimality equations and estimate an optimal policy. However, it is
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easy to see that this policy results in a positive probability of converging to a
nonoptimal solution, hence its regret is unbounded; c.f. Robbins (1952), Fox and
Rolph (1973). The remedy to this situation is to allow taking seemingly inferior
actions from time to time. This should be done often enough to alleviate the
possibility of estimation errors, but not so often as to affect the rate of convergence to
the long run average reward. The main result of the paper is that the optimal tradeoff
with respect to the convergence rate is achieved if all actions from critical state-action
pairs (x, ) are taken a number of times asymptotically equal to log N/K(x, a; P).

Policies in Cy attain this asymptotic behavior using the following mechanism. In
period k, the solution of the average reward “estimated optimality equations” of the
restricted problem provide estimates g%, 4* of the optimal expected average and
differential rewards.

Instead of selecting an action that maximizes the right-hand side
Hx, a; pI*(a), h*) of the “estimated optimality equations” for the current state x,
the action with the largest value of the index is taken, unless f (x; P%, ) =
O(x; P*, @), when a forced selection of an (any) action from O(x; P¥, 2,) is made.

The index U(x, a; w;) for action a is the inflation of the right-hand side of the
“estimated” optimality equations, calculated as the maximum value of Ax, a; q, h*)
in a confidence region specified as the subset of @(x, a) consisting of all probability
vectors g that are close (in the Kullback-Leibler information sense) to the estimate
PrENa), ie., L pI*Na), ¢) < log k/T(x, a).

To see the role played by the forced selections, consider a time period k, when the
state is x and current estimates implying that I'(x; P¥, 2,) = O(x; P*, 2,). Then,
we have the situation that none of the optimal actions at state x of the restricted
problem (P, 9,) will be contained in the restricted set the next time state x will be
visited, unless one of these actions is taken. In §6 it is shown that as a consequence of
this forced selection scheme, the optimal solutions of the restricted problems have
the following asymptotic monotonicity property: P7oP[e(P, 2,,,) = g(P,2)] =1
— o(1/k), as k — 0, Vg € C,,.

It should be noted however that forced selections are introduced to handle the
worst case contingency for a policy in Cy considered in Proposition 5. Computational
experience in Burnetas and Katehakis (1995) indicates that this is a rare eventuality.

The restricted action sets serve the following purpose. In any period when solving
the optimality equations, we consider only those actions for which the estimated
transition probabilities are relatively accurate. Thus, asymptotic results can be estab-
lished regarding the convergence of g% A* to g*(P) and A*(P), respectively. In
addition, in §6 it is shown that PJQEO'P[.@,C ca(P)l=1-o0(/k), Vi, € Cg. This
implies that, for large k, the sets D, (x) will contain only optimal actions, with high
probability. Therefore, there is a reduction in the computational effort in solving the
average reward optimality equations for the restricted problem (PF, Z,), as k
increases.

We discuss several properties of the index below.

By construction, U(x, a; @) is increasing in k and decreasing in T, «(x, a). This
implies that relatively undersampled actions are given a higher chance to be taken in
every period.

For any y > 0 and any vector 4 # 0, the supremum in u, (p, h,v)is attained, i.e.,
3q* € O(x, a), satisfying I( p, q) = Yy, such that u, (p, h, v) = A(x, a; g*, h). This is
so because the set {g € O(x, a): I D> q) < v} is closed and convex, therefore, the
supremum of the linear function Z(x, 4; g, #) is attained at a point on the boundary
of this set.

In addition, u, (p, h, ») = SUP, c or oy Z(X, a3 g, h) = r(x, a) +
Max, ¢ g+, o, A(y) (note that the supremum need not be attained in this case). Thus,
if for some w,, T} (x, a) = 0, then, U(x, a; w,) = r(x, a) + Max, ¢ 5+, o H(Y).
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In Appendix B we give two examples, for [S*(x, @)l = 2 and 3 where the computa-
tion of U(x, a; w,) (and the unobservable K(x, a; P)) is presented graphically.

Finally, we discuss the two choices we made in the specification of Cg; both made
for simplification of the proofs.

First, in the definition of U(x, a; w,), log k/ T,(x, a) can be replaced by a function
of the form (log k + f(log k))/T;(x, a), where f(¢) is any function of ¢ with () = o()
as t — o, without affecting the optimality results. It can be shown that
log T,(x)/T,{x, a) can also be used. This change introduces complications in the
proofs and is omitted. The index U(x, a; w,) is uniquely defined up to this equiva-
lence.

Second, in the definition of the “relatively frequently sampled” action sets: D (x)
we chose to specify them by the relation T;(x,a) = log? T,(x); a careful reading of
the proof of Proposition 5 (in §6) shows that any function f(T(x)) satisfying
log t = o( f(¢)), and f(t) = o(z) can be used instead of log” T,(x) without affecting
the results.

We next state the main theorem of this paper.

TueoREM 1. Under assumption (A) the following claims are true.
() Lminfy ., RE(x,, P)/log N = M(P), V& € Cp, VP EF.
(i) limsupy_, . RE(x,, P)/log N < M(P), Yy € Cg, VP €.
(iii) R7(x,, P) = M(P)log N + ollog N), as N — =, Yy € Cp, VP e,
(iv) Cr € Cy-

PrOOF. Claims (i) and (ii) are proved in Theorems 2 and 3, in §§5 and 6,
respectively.

From (i) Vrr, € Cy, R5(xy, P) = O(log N) = o(N®), Yo > 0, therefore, Cp € Cp,
and using also claim (), limy_, ., R5*(x,, P)/log N = M(P), thus (iii) follows.

To show the last claim we only need to divide RZ(x,, P) and Rf(xy, P) by
M(P)log N, when M(P)>0. ©

Claim (D) of the theorem states that the regret of any UF policy is (asymptotically)
larger than M(P)log N, because critical actions must be taken at least
log N /K(x, a; P) times. Part (ii) states that the regret of an index policy is (asymptot-
ically) smaller than M(P)log N, which means that policies in Cp achieve the lower
bound of the regret in the class of UF policies, thus they are UM.

In view of Theorem 1, it is instructive to compare the asymptotic expressions below.
Equation (3.2) is an expression for the maximum expected finite horizon reward
under complete information about P (c.f. Herndndez-Lerma 1989), while equation
(3.3) is the corresponding expression for expected finite horizon reward of a UM
policy r,, under incomplete information about P following from Theorem 1 (using
also equation (3.2)).

(3:2) Vi (xq, Py = Ng*(P) + O(1)
(3.3) Vio(xe, P) = Ng*(P) — M(P)log N + o(log N).

Regarding the asymptotic behavior of V;7o(x,, P) with respect to the unobservable
constant M(P), it follows from Theorem 1 that, for P €% such that M(P) = 0,
V7o(x,, P) = Ng*(P) + ollog N), therefore V7°(x,, P)/N converges to g*(P) faster
than log N/N. However this does not necessarily represent the fastest rate of
convergence. A modification of Cg, which guarantees a maximum convergence rate
for this case is an open problem.

4. The regret function and state action frequencies. In this section we consider
an arbitrary policy 7 € C and establish two results. First, we develop an expression
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for the N-horizon regret R%(x,, P) in terms of the expected state-action frequencies
Ty(x, a). Second, we develop asymptotic bounds for the distributions of the state
frequencies under any 7 € C.

In Proposition 1 below it is shown that the contribution to the regret of any
nonoptimal action under any policy 7 is asymptotically proportional to the expected
number of times this action is taken under 7, with the proportionality factor equal to
the test quantity ¢*(x, a; P).

Prorosition 1. For any policy m € C,

Ri(xg, Py =3 Y. ELP[Ty(x,a)]¢*(x,a;P) +O(1), asN — .
x€S a0 (x; P)

PrOOF. It is well known (c.f. Veinott 1974, Hernandez-Lerma 1989) that for all
P e Vylxg, P) = Ng*(P) + h*(x,, P) + O(1) (as N — ). Substituting this ex-
pression for Vy(x,, P) into the regret definition we obtain R (x,, P) = DF(x,, P) +
O(1), where D7(xy, P) = Ng*(P) + h*(xy; P) — ViT(x,, P).

Express V7(xy, P) recursively as Vi(xy, P) = ET[E, [Ex[r(x,, 4) +
Vi_(X,, Pl This follows by conditioning on action A, and the state X 1 after the
first transition.

Substituting the above expression into the definition of DJ(x,, P) yields

Df(xq, P) = g*(P) + h*(x0; P) — ET*[E, [r(x,. 4,)]]
+ B P[B, [Ex [(N = Dg*(P) - Vi, (X, P)]]].

After adding and subtracting the same quantity, E7"[E , [E x [A*(X;; P)] from the
right-hand side, we obtain DF(x,, P) = E™ P[qb*(xo,AO, P+ E™ PIDF_ (X, P,
and iterating down to N = 1,

N-1

qu\;(xoaP) = Z E;‘O’P[(b*(Xt’A[;P)] = Z E E;T()’P[TN(x,a)](ﬁ*(x, a;P)7

t=0 XES aeA(x)

where the last equality follows from ¢*(X,, A,; P) = L, o 5 s e 402X, D)™ (x, a; P)
and the definition of 7}, (x, a).
Since ¢*(x, a, P) = 0, Ya € O(x; P), the proposition follows. ©

In the following proposition it is shown that, as a consequence of the irreducibility
assumption, all states will be visited often, regardless of the policy used.

PROPOSITION 2. (i) There exist A >0 and y> 0 such that PT"[T(x) < pk] <
A VK foralixe S, k=s=1S|, p>0, we C.
) For al p<vy,x€8, 7 C P PITAx) < pk]l = o(1/k) as k — .

ProoF. We only prove (i), because then (i) is immediate. The proof for the case
that a fixed stationary policy is used is given in Ellis (1985). The proof below is for the
case of general policies.

Fix a state x € §. For any policy = and any p > 0, it follows from the Markov
inequality that P P[Ti(x) < pk] = P[> "[e”Ts¥) > e7PK] < ¢ FET- Ple~Tu9],

Consider the expression EJ:“[e ‘Tk(x)] Let k = s = the cardinality of the state
space. By conditioning on the history w,_, of states and actions until time & — s, we
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obtain
Ew P[e—Tk(x)] = E" P{Eﬂ' P[e T/c(x)]] _ Ejrcro,P[e—Tk_s(x)EZ;i[e~(Tk(x)ka,s(x))]].

In order to prove the proposition, it is sufficient to show that there exists an ¢, < 1
such that, for all policies 7 and histories w,_, = X, 4, ..., X;_g,

(4‘1) Egki[e*(Tk(X)_Tk—s(X))] < €.

Indeed, assume (4.1) is true. Then, ET Ple V] < ¢ ET> "[e™"+-")), and repeating
the same argument, we obtain E;;P[e_Tk(x)] < E?(;P[e‘Tko(x)]ellk/”, where kg, =
mod(k, s). Therefore, the claim follows with y = —log €, /s.

We now show (4.1). For any & > s the possible values for T (x) — T, _ (x) are
j=0,...,5 Let Q77(j 0 ) =PI IT(x) ~ T,_(x) =j] and W™ (o, )=
Ew P[Tk(x) Tk s(x)]

We first show that for any P €. there exists v(P) > 0 such that W™ % > (P),
Vo, Vo,_,.

The quantity W™ *(w,_,) denotes the expected number of visits to state x during
the interval from k — s to k, given the initial history and a policy 7 which takes
actions based on the history alone and not on the (unknown) transition probabilities.
Therefore, W™ (w,_,) > v, (o,_s; P), where v, (w,_;P) is the minimum
expected number of visits to state x between k — s to k, over all policies based on
the history w,_, and full knowledge of P.

Consider an MDP with known transition law P, and one step cost equal to 1 if the
current state is x and zero otherwise. Then v,_, (@,_,; P) as defined above is equal
to the minimum total cost of this process from time k — 5 to %, given a history o, _,.

Since, v, ;(w,_,; P) is the solution of a finite horizon dynamic programming
problem with stationary transition probabilities and cost structure with initial state
Xy_q, it follows that v, (@, _;; P) = vy (x;_; P). In addition, there exists a finite
sequence f= {fy,....fi_¢} of deterministic policies under which vy (x;_; P) is
attained, i.e., vy (x,_s; P) = vf (x;_;: P).

From Theorem 1 in Veinott (1974), by making state x absorbing, we have that
v, (x,_s; P) > 0 for every sequence f={fy,...,f,_;}. Because there is a finite
number of such sequences, it follows that v, (x;_;; P) > 0, for all x;_,.

Therefore, W™ F(w,_,) = v(P) = min, . gvy (x; P), and since W™ (w,_ )=

i, jo™ P(], w,_) < s(1 — Q™F0; w,_,), it follows that Q™F(0; w,_,) <
1 — o(P)/s.

Thus, E™P[e” 0 Ty, ] =35 6770 (j; ) < O770; ) +

_1(1 - Q" PO o N<et+(1—e 1)(1 —uv(P)/s) < 1, and (4.1) follows with
V(=X —o(P)/s). b

5. The asymptotic lower bound for the regret. In this section claim () of
Theorem 1 is proved. This is accomplished by showing first, in Theorem 2(i), that
under any UF policy 7, the expected number of times that action a from a critical
state-action pair (x, a) € B(P) is selected, is asymptotically larger than
log N/K(x, a; P).

The main idea of this proof is the following.

Consider a pair (x, 4) and two transition laws P, Q €%, such that (x, a) € B(P),
and Q = Q(x, a; P, g). Because the UF policy = must satisfy the fast convergence
property under both P and Q, it follows that, under Q, action a which is uniquely
optimal for state x, must be selected “many” times, in the sense that for all ' # a,
E7 9T (x,d) = o(N®), Ya > 0.
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However, probability and expectation under P and Q are related through the
likelihood ratio L(P, Q; wy) defined for all histories of states and actions. Using a
change of measure from P to Q and the properties of the likelihood ratio described
in Lemma 2, it is shown in Theorem 2 that the lower bound for Ty(x, @), under Q,
translates exactly into log N/K(x, a; P), under P.

For P,Q €., let

L(P7 Q; wN) = PxZIP[XOJAO:XI"'"X\T]/PxZ’Q[XO’AOﬂXla"'91YN]

denote the likelihood ratio of P and Q given history wy,.

For k> 0 and any p,q € 6(x,a) let A (p,q) = ij:lpyj(x, o/ qy(x, ) denote the
part of L corresponding to the history of transitions out of state x under action a (an
empty product is equal to 1).

Lemma 2 states the precise relationship between L and A and a convergence
property of A based on the law of large numbers. The proof is inciuded in Appendix
A. We use the notation | b] for the integer part of a constant b.

Lemma 2. () If Q = Q(x, a; P, q), then L(P, Q; wy) = Aq, (. o(py(@), g).
(D) Let by be an increasing sequence of positive constants such that by — =, as
N — =, Then,

1)px(u)

( max log A, /by > (1 + 5)I(p,q)) =0(1) asN—»>»,¥5>0. o
k<lbyl

THEOREM 2. (i) liminf, . E_’JO*PTN(x, a)/log N = 1/K(x, a; P), ¥(x, a) € B(P),
Ve Cp. B

(if) timinf, ., R(x,, P)/log N = M(P), Vr & C,, YP € 5.

ProOF. We use arguments from the proof of Theorem 2 in Lai and Robbins
(1985a), together with Proposition 2 and Lemma 2.

Since K(x, a; P) > 0, ¥(x, a) € B(P), the Markov inequality implies that Ve > 0,
E7 Ty (x, a)/log N = (1 — €)/K(x, a; PP MTy(x, a)/log N > (1 —
e)/K(x, a; P)], VN > 1.

Thus, to show the theorem, it suffices to prove that lim, _, . PXZ’P [Ty(x,a)/log N
> (1 - €)/K(x, a; P)] = 1, or, equivalently,

(1 —e€)logN

. a, P
]\]/‘l—rgo Pxo [Z‘V(x7a) < K(X,Q;P)

}=0, Ye > 0.

Let p € (0, y), where y is a constant that satisfies Proposition 2. Then,

g (1 - e)logN
pr Ty(x,a) < ___—-—wK(x,a;P)

1 —e€)lo

< P7P[Ty(x) <pN] + P;;’P[TN(x) = pN,Ty(x,a) < Lf(ffz?;_}%)ﬂ .
From Proposition 2, P "[Ty(x) < pN] = o(1). Therefore, to prove the theorem it
suffices to show that P7 *[Ty(x) > pN, Ty(x,a) < (1 — e)log N/K(x, a; P)] = o(1).

Let m e Cp, (x,a) € B(P) and 6 = €/(2 — €) > 0. By definition of K(x, a; P),
there exists g € A®(x, a; P) such that K(x, a; P) < I(p (a),q) < (1 + 8)K(x, a; P).
After simple algebra, (1 — €)/K(x,a; P) < (1 — 8)/Kpa), q), thus it suffices to
show that P> PA% = o(1), V& > 0, where A = {wy: Ty(x) = pN, Ty (x, a)/log N <
1 = 8 /1 pla), ¢)}.
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Let QO = Q(x, a; P, ), for g as defined above. Since 7w € Cp, and O(x; Q) = {a}, it
follows that

BT () ~ Ty(x,0)] = B9 E Tu(xd)| =o(N¥). a0,
ad#a
Therefore, from the Markov inequality,

PTCAY < P9 Ty (x) — Ty(x,a) = pN — B log N]

ED O[Ty (x) = Ty(x,a)] o(N°/%)

= pN —Blog N = PN —pBlogN

= o(N?/271).

Let C% = {wy: log A_T.V(x,a)(px(a), g) < (1 — 8/Dlog N}. Then, PTFA% =
P7P(AY CY) + BT P(A5 CR). Thus,

Pr (A2, C) < 02/ NPT (4%, CY)
< NIZ02PTOAY = N172/20(N°/271) = o(1),

where the 1st inequality above is due to a change of measure transformation between

P and Q using Lemma 2() and the property that on CF, Az (p:(a), @) <
(1-8/2)log N

e .

To show that P7-P(A% C}) = o(1), note that, from Remark 1:

Pr-F(A3,C2) < pr(a)(klzlng{log A,) > (1 — 8/2)log N)
<iby

= B, max (105 AL /by > (py(a). )1 + 3/(2(1 = 8)))).

=i

where by = (1 — 8)log N/I(p(a), g). Thus, the property follows from Lemma 2(3ii).
Therefore, P> A%, = o(1), as N — , and the proof of part (1) is complete. Claim (ii)
follows from (i) and Proposition 1. O

6. Optimality of index policies. In this section claim (i) of Theorem 1 is proved.
The result is stated as Theorem 3 at the end of the section.
We will use the notation ||o|| to denote the L.-norm of vector v. For any pair (x, ),

let Z, be the abbreviation for Z,(x, a) = 1 (X, =x, mo(w,) = a) and for any € > 0
define the random variables:

N-1
TM(x,a5¢) = 3 1(Z, =1, A — h*l < €, U(x, a; 0,) =" (x; P) — 2¢),
k=1
N-1 R R
T@(x,a:¢) = ¥ 1(Z, - LA~ il < e, 9(P*, 2) c4(P),
k=1

U(x,a; ) <Z*(x; P) — 25),

N-1
TP = ¥ 1 (||ﬁk — *| > e or O(ﬁk,gk) Stﬁ(P”
k=1
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Note that T3 represents the number of times during transitions 1 to N — 1 that

An action a is taken in state x, while at the same time the estimate h* is within € from the
optimal solution under complete information 4*, and the index of action a is within 2e from
the maximum right-hand side #*(x, P) of the (unobservable) optimality equations for state
x (for i = 1),

Action g is taken in state x with its index being less than Z*(x; P} — 2¢, while the
estimate A* is within e from the true (under P) optimal vector A*, and all the optimal
policies for the restricted problem (P*, @) are optimal under P (for i = 2),

Either the estimate /% is not within e from the true optimal vector &* = A*(P), or there
are optimal policies for the restricted problem (P*, @,) that are not optimal under P (for
i=3).

Asymptotic upper bounds for ET>*T{, i = 1,2,3, are developed in Propositions 3,
4, 5, respectively. Then, the result of Theorem 3 follows, since (including the
transition at time 0) 7y, (x,a) < 1 + L2, T holds sample pathwise.

The main idea in the proof of Proposition 3 below, is that if a is a nonoptimal
action (under P) in state x, then events specifying 7"(x, a; €) can occur only if
either T,(x, a) is sufficiently small in every intermediate period k (since U(x, a; w,,) is
decreasing in T,(x, a)), or if the estimate pI**“(a) of the probability row px(a)
is significantly different from the true value. The frequency of the first contingency is
bounded using the simple counting argument in Lemma 3, and of the second by using
a large deviations property of the transition probability estimates established in
Lemma 4.

LemMa 3. Let Z, be any sequence of 0-1 constants (or random variables) and let
k-11{Z, = 1). Then, ¥c > 0, LY 11 {Z, = 1, t, < ¢} < ¢ + 1 (pointwise if we
have random variables).

PrROOF. Note that Y- 11 {Z, =1, ¢, =i} <1, Vi= O ,lc]. Therefore, T5-'1
Z, =1L t,<c}= le,flol{zk—ltk—z}— el v 1{Zk—1 t, =i} <lcl
+1l<c+1 o

In the proof of Lemma 4 and Proposition 3 we use the following generalizations of
AB(x, a; P) and K(x, a; P) defined in §2.1.

For any € > 0 let A®(x, a; P, €) = {g € O(x, a): HA(x, a; q, F*(P)) >Z*(x; P) —
e} and J(p (a); P, €) = inf{l( p,(a), g): g € AO(x, a; P, €)}.

Lemma 4. () For any pair (x,a) and B > 0, there exist constants C = C(x, a),
¢ =clx,a), ty > 0, such that P, [l p, (a) — pxy(a)l > Bl Ce™, fort = 1.
(ii) Forany 8, € > 0, pr(a)[J(px(a) P,e) < J(pla) P,e)— 81 =o0(1/1),ast — =

ProoF. () Since 1 —w, — 0, it follows from the deﬁnition of p; (a) that, for any

,8 > 0, there exists f, = ¢t,( ) < @ such that (a)[lpxy(a) pxy(a)l > Bl <
P, Jf(y;x, a) = p, (@ > B/2], Vi = 1, Because fly;x, a) is the average of ii.d.
Bernoulli random variables with mean Py,(@), it follows from Cramér’s theorem on
large deviations (c.f., Dembo and Zeitouni 1993, p. 27) that P, . [If(y; x, @) — p, (a)l
> B/2] < Ce™¢* for some C, ¢ > 0, therefore, part (i) follows.

(ii) From the continuity of I(p, q) in p and q and, hence, of J(p; P, €) in p, it
follows that the event {J(p(a); P, €) < J(p(a); P, €) — 8} implies the event: {l| pi(a)
—pla)ll > n}, for some 7= n(S) > 0. Thus, as a consequence of part (D,
P, I (pia); P,e) <Hpla)P,e) — 8l =0(l/t),as t > » @O
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PROPOSITION 3. V7, € Cp, YP €% and Vx €S, a & O(x, P), the following is
true.

lim limsupE]» PT\"(x, a; €) /log N < 1/K(x,a; P), if (x,a) € B(P),

€0 N—ow

lim limsup E70 *T\P(x, a5 €) /log N = 0, if (x,a) & B(P).

e—0 N-—-w

PrOOF. Fix x €S, a € A(x), a & O(x; P). We will use the abbreviations: ¢, =
Tx, @), p* = pi*Na), AB(e) = AB(x,a; P, e), AO = AB(x, a; P,0), L(q) =
HAx, a; q, W (P)), .,?(q) =A(x, a; q, h*), 7+ f]*(x pP).

On the event {||A* — h*|| < €} it is true that

(6.1) |2(q) ~2(q) < e, Vq.

We consider two cases.

Case 1. Je; > 0 such that AB(ey) = I, ie.,, H(q) <&* — ¢, Vq. Then, for any
€ < €,/3, it follows from (6.1) that $(q) <§Z(q) +e<F* — g + e <F* - 2¢,
therefore, U(x, a; o) <.%* — 2¢, hence TP(x, a; €) = 0.

Case 2. A@(e) # (J, Ve > 0. Note that the deflmtlons of the functions w, , and J
imply’ that they possess the following “duality” property. The mequahty
u, (p, B*(P),y) >Z*(P) - € is equivalent to Jp; Pe) < v, Ve, y> 0.

Now, (6.1) implies that Z(g) > (q) — €, Vg, thus, w, (P h*(P),log k/1,) >
u, (p%; h* log k/t,) — € = U(x, a; w,) — €. Therefore, on the event {U(x, a; w,) >
% — 2€} it is true that u, (p%; h*(P) log k/t,) = &* — 3e, thus, from the duality
between u and J, J(p%; P,3¢e) < log k /1.

Combining the above, T{(x, a; €) < L37'1(Z, = 1, J(p™; P,3€) < log k/1,).

Take any e < [.&* f/(px(a))]/3 and Iet J. = J(px(a) P,3e), .= J(p"; P, 3e).
Then, J, > 0 and V5 € (0, J,) we have (sample path-wise) that

N-1
TM(x,a;€) < I(Zk =1,J. <log k/tk)
k=1
N-1 R
- [I(Zk= 1,J. <logk/t,,J. = J, - 8)
k=1
+1(2, = 1.3 < log /1, 5, < 3. - 8]
N-1 A
< ¥ [UzZ=1 14, <logh/(J. - ) + (Z, = 1,5, <J, - 8)]
k=1 :
N-1 R
<logN/(J.=8) +1+ ¥ 1(Z,=1,3.<1J, - &),
k=1

where, for the last inequality we have used Lemma 3.
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Taking expectations of the first and last terms and because § is arbitrarily small,
-1

E7ePTO(x, a3 €) < log N/J, + 1 + EToF E 1Z, = 1, J. < J. ~ 8)]. In addition,

E7? i 1(Z,=1,J.<3.-8)
k=

| Toyl(x, @)
=E? X 1(J(p’; P,3€) <I(p.(a); P,3€) — 5)}
| =0

N
= Elr(f’P 2 1(J(p's P,3€) <J(p.(a); P.3e) — 3)}
[i=0

2

B, @ Z HI(p'; P.3e) < J(pi(a); P.3e) — 5)} = o(log N),

where the second inequality follows from Remark 1 and the last equality from
Lemma 4. Therefore, ET> P T{M(x, a; €) < log N/J(p(a); P,3€) + o(log N).

To complete the proof note that lim__, , J(p(a); P,3€) = K(x, a; P), if A® #
and lim__, , J(p(a); P,3€) = =, if A® = .

Indeed, the first claim is a direct consequence of the definitions of (x, a) € B(P),
A®, J and K.

For a proof of the second claim, if A®(e) # @ and AQ =, then ¥* =
SUP, < ox, -2 (@)} < . For any y> 0, let u(y) =u, (pJa), h*(P),y), note that
Z* > u(y) and let €, = (&* —u(y)/2>0. Then AAg) =2 F* — €y =(Z* +
u(y)/2 > uly), Vg € AB(¢,). Hence, W p,(a), q) = v, Vg € AO(¢&y), 0therw15e we
have the contradiction that 3g, € AG(e,) with #(g,) < u(y). In summary (and using
the definition of J_), we have shown that Vy > 0, 3¢, = €,(y) such that J, > vy; the
proof of the claim is complete. ©

In Proposition 4, below, the structure of an index policy is used to show that if a is
a nonoptimal action (under P) in state x, events specifying T{?(x, a; €) can occur
only if the index of each optimal action a* is also less than &*(x; P) — 2¢. In
Lemma 6 it is established that the probability of such an event occurring at any
period k is o(1/k). In proving Lemma 6, the definition of the index U(x, a¢*, w,)
implies that a necessary condition for U(x, a*; w,) <.Z*(x; P) — 2¢ is that the
transition probability estimate p (a*) is sufficiently far from the true value p (a*).
The proof that the probability of this latter event is o(1/k) does not utilize the
structure of the policy or the index. Instead it requires a change of measure
transformation developed in Lemma 5 the proof of which is included in Appendix A.

Let

Mp;a1,9:) =W p,q,) — W p.qy)

= )X b log[qu/q2y], forx € S,a € A(x), p,q,, 9, € O(x, a).
yes t(x, a)

LemMMma 5. () Fixx € S, a € A(x), € > 0 sufficiently small. Then Yh € R’ with
h(y) # h(y") for some y,y' € S¥(x, a), there exists a vector q°(e) € O(x, a) such that
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HAx,a;,q%e), ) =Ax,a; p(w),h) — € and
{q: Z(x,a;q9,h) <F(x,a; pla), h) — €}
= {a: Mq:p:(0), 4°(€)) < K¢’ (e), p@))}.

(i) VxS, a € Ax), p,qg € B(x,a), c,d >0 and b, b,,y € R,

k
Y BIM[ip.q) < —c+ b/t 1, q) > (logk + by) /t]
t=|(dlog k+v)]

=o(1/k), ask — =,
(i) Vxe 8, a e Ax), p,ge &x,a),c,d >0 and B,y <R,

k
Y PIMpUa);p.q) < —c,X(pi{a),q) > (logk + B)/t]

t=1{(d log k+v)|
=o(l/k}, ask — o 0O

For p€ O(x,a) and B R, let Flp;B)=1{g € 0(x,a) p,q) <Uogk +
B)/t). Note that Ux, a; w,) = max{L(x, a; g, i*): g € F,, To(x, ok B P{a); 0)}. For
e>0, B R, heR’ and 1 <t <k, the events:

(6.2) By(x,a5¢, B, h)
= {w: Z(x,a59, k) <F(x,a;p(a), h) — €,Yq € F,( pi(a); B)},

satisfy the claim of Lemma 6 below.

LEMMA 6. Forallxe S,acAx), e>0, eR, h e R’

k
Z ol Bu(x,a5€, B, )] =o(1/k), ask — .

Proor. If A(y) = h,, Vy € $7(x,a*), then HAx,a;q9,h) =r(x,a) + h, =
Zx, a; pla), h), Vg, therefore, P, [ B, (x, a; €, B, W)] = 0, V¢ and the claim is true.

We next consider the case that A(y) # h(y) for some y,y € $*(x,a). From
Lemma 5(i), it follows that for € > 0 sufficiently small, there exists a probability
vector ¢° = ¢%Ce) € O(x, a) such that Ax, a; ¢°, h) = A(x, a; p(a), h) — € and

{a: Z(x,a;q,h) <Z(x,a; p(a), h) ~ €} = {g: M(p.(a),q") < ~¢},

Where ¢ = Kq° p,(a)). Hence, B (x, a; ¢, B, h) C B},, where Bkt {Mgq; pLa), g"
—-¢,¥g € Fkt(pt(a) )} and it is sufficient to prove that ©f_B, ,[B;.1= o(1/k).
On the event By, the following are true. First, since pl(a) € F (pi(a); B), it
follows that M pi(a); p(a), ¢°) < —c. Second, since Mg’ p(a), %) = —c, it follows
that ¢° & F,(pAa); B), ic., (pa), q°) > (logk + B)/t
Therefore, Bj, C B},, where B}, = {MpUa); pla), ¢") < —c, KpHa), q°) >
(fog k + B)/t}. Let I(g") = maxqemm)l(q, % = max, ¢ g+(, ,llog g Oyl < oo,
For t < (log k + B)/1(g%) it is true that I p(a), ¢°) < I(¢g") < (og k + B)/t, thus,
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B}, = (J. Therefore, in order to prove the lemma it suffices to show that
Zi;mog w8y, T1Bp il Bil = o(1/k). The last relation follows from Lemma 5(iii) for
sufficiently small e. This completes the proof. o

We can now prove the following,

PROPOSITION 4. E70PT{P(x,a; €) = ollog N), as N - @, ¥my € Cy, VP €2,
Xx €S8, a& O(x; P) and € > 0 sufficiently small.

PrOOF. Recall that T{P(x, a; €) = LY (A4, (x, a; €)), where
A(x,a;¢€) = <Zk =1, lA* — h*|| < e, @’(ﬁk,gk) ca(P),
U(x,a; 0,) <F*(x; P) — 26}.

To prove the proposition it is sufficient to show that P "4,(x, a; €) = o(1/k), as
koo, ¥Ye>0. Fix an x €S and an a ¢ O(x; P) as in the statemegt of the
proposition. On the event A4,(x, a; €) it is true that: I'\(x; P*, 9,) c #(P*, 2,) C
O(x; P) and since a & O(x; P), it follows that, on the event A,(x,a; e) ae
I,(x; P¥, @,). Hence, on A,(x, a; €) the following holds: U(x, a*; w,) < U(x a; wk)

<F*(x; P) — 2¢, Va* € O(x; P). Thus, A (x,a;€)C na*eO(x,P) Lx, a*; e),
where

W(x,a*;€) = {wk: IA* — h*|l < €, U(x, a*; 0,) <Z*(x; P) - 26},

and it suffices to show that P P4 (x,a*; €) = o(1/k), as k — =, for any at e
O(x P). Fix a* € O(x; P) and € > 0, and note that A} (x, a*; €) =
UL (4 lx, a* ,e)ﬂ{Tk(x a*) =)

_On the event 4 (x,a%;€) N {Tk(x a*) =t} the followmg are true. First, since
A% — B*|| < e, it is true that F(x, a*; q, h*) <H(x,a*; q, A%) + € for all qg. Second
since U(x, a*; ) <Z*(x; P) — 2¢€ and T, (x, a*) = 1, it is true that A(x, a*; q, 7
< F*(x; P)—2e for all ¢ EFkt(ﬁ’(a ); 0). Combmmg the above, it follows
that A\ (x, a*; e) N {T(x, a*) = 1} € B, (%, a*; €, 0, h*), where the events
B, (x,a*; €,0, h*) were defined in (6.2). Thus,

k

EP“O P(A(x,a%;5€) N A{T(x,a*) =1})

P70 T4, (x, a*; €)

A
B~

P, (B (x,a%;€,0, ") =o(1/k), ask—x,

]
=3

4

where the first inequality is due to Remark 1, and the last equality is established by
Lemma 6 with a =a*, h =h*, B=0. O

In Proposition 5 it is shown that ET»*TP(e) = o(log N), by showing that the
event that in period k the solution A* of the restricted problem (P*, ) differs from
the optimal solution #*(P) by more than e, has probability of order ol1 /k).

To prove this claim, we divide the first k time periods (for large k) into m + 1
subintervals, where m = |&7] is the total number of deterministic policies, in such a
way that the length of each subinterval increases linearly with k. The main step of the
proof is to show that, with high probability, after the first subinterval, the transition
probability estimates for all frequently taken actions will be sufficiently accurate, so
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that the following events will occur. If at the beginning of any subsequent subinterval
the solution of the (observable) restricted problem is a nonoptimal policy for the
(unobservable) unrestricted problem (P, «7), then, during this subinterval, the indices
of the under-sampled actions will be large enough to induce taking at least one
improving action in every state; this property is shown in Lemma 7 and employed in
Lemma 9. Thus, at the end of the subinterval the new estimate of the optimal policy
will be strictly better than in the beginning. This monotonicity property ensures that,
even in the worst case, at the end of the last subinterval (i.e., at period k), a true
optimal policy will have been identified.

Let m = [/| denote the total number of deterministic policies. Fix 8 < 1/(m + 1).

For k> (1/(m + 1) — B)7}, divide the time interval {0,..., %k — 1} into m + 1
subintervals IF = {z: b¥ <t < b5, |}, v=0,...,m, where b = Oand b* =k — (m +
T—wlk/m+ D), v=1,...,m+ 1. For v=0, b¥ — bk =k —mlk/(m + D] =
k/(m + 1) > Bk, while for v=1,...,m, bk, —bf =lk/tm + D|>k/(m + 1) —
1 > Bk, since k > (1/(m + 1) — )1, Therefore, the length of all subintervals I¥ is
greater than Bk, and b* > vBk. In addition, b¥,, < k, therefore, b%,, /b% < 1/(vB)
<1/B and logb¥,, —logbf < —log B, Vwv=1,...,m.

For v =1, , m, let Ay, a) = Ty (y, &) — Tye(y, a), and A (y) =
Yoo amnd Ly, a) denote respectively, the number of occurrences of the pair (y, a)
and of state y, during subinterval 7¥.

Fix p € (0,1) such that Proposition 2 holds. For k£ > (1/(m + 1) — 8)7!, and
8,,>0let

B(¢) = {w: A(y) > pBk and | pT9(a) — p,(a)] <
VyeS,¥w=1,...,m, Vit 2 bf,Va € D(y)}.

B,({) denotes the event that during any interval I* all states are visited at least pSk
times, and also after period b%, for all actions a € D(y), the estimates of the
transition probabilities are within ¢ of the truc values.

In Lemma 7 below several intermediate properties of the estimation scheme and
the index function are established in terms of the events C¥(8), defined for § > 0
and v=1,...,m. Since the proof of these properties is not dependent on the
structure of the index policies, but instead uses mainly continuity arguments, it is
included in Appendix A. Let

Ck(8) = {wk: h(P, D) = (P, Dy ), Ve €I} and U(y, a; o, )

sg(y,a;py(a),h(P; 91,5)) — 8, forsome (y,a) and some t;, € Ivk}.

LEMMA 7. Vmy € Cg V6, €> 0, 35, = £€), & = £,(8), & = £,(8) > 0, ky =
ko(m, 8) such that:
@ Bk(é’) - {wk [gf(Pt) _gf(P)i < €, ”hf(P ) - f(P)” <€ Vt= b erz}:
VE< ¢
Gi) 1Bk(g) CHop Uy, a5 0) <Ay, a; pfla), (P, 2,)) + 8, ¥Vt > bf,yeS ac
DyN V< &y, k> k.
(i) P70 [ B (LCHN] = 0 /k), as ke — =, Wy =1,...,m, V¥ < {5

LEmMMA 8. Let 7y & Cy. On the event Bi({), Ye> 0, 3¢, = £(e) >0, k; =
ko(m, €) such that, for k > k, the following are true.
() For t=b%, any ye S, and a € A(y), if Z(y,a) =1 with a =7t
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T (y; P!, D), then YNZ, (y,a)=1, aeT(y; P, 2., <1, where 7=
pBk/(2 IogA( pBk)), Yi > 0. X

(i) o(P', 2,) co(P, D), and |W(P', D) — (P, D) < e, Vi =bF,... .k, V(<
&y
Gii) g(P, 2,,,) = g(P, D), ¥t = bk, ...k, V{ < £,.

Proor. () Fix y €5, a = w,(t) € I'(y; PL2), t=b% let n=T(), o=
n/2log n). Recall that I'(y; P, 2,) € D(y). Thus, from the definitions of D/(y)
and I',(-, -, -) we have log® n < T(y, a) < log®>n + 1.

For n sufficiently large it is true that

}ill (1) (3,0) = L,aeny(y; P, 9,
A

1 (Zt+](y’a) = 19 lng Tt*](.)’) =< Tt+](y7 LZ) < logz Tt+](y) + 1)

~

Il
s

A
s

1 (Zlﬂ(y,a) =1,log?n +1< T, (y,a) <log*(n+ o) + 1)

-~
il
-

Z 1(Zy,(y,0) =1,log?n + 1 < T, ;(y,a) <log’n + 2)

J

IA
i

]
s

1 (Z,+](y,a) =1,T,.,(y,a) = [log>n] + 2) <1

[
iy

J

The first inequality is due to: T, (y,a) > T,,,(y,a) = T(y, @) + 1 = log’n + 1
(since Z(y,a) =D and T, (y) < T,, ,(y) < T,(y) + o =n + o (since, j < o).

The second inequality follows from the property that, for n sufficiently large,
log’(n + o) <log’n + 1. To see this, let v(x) = 2xlog(1 + 1/Qx)) + log*(1 +
1/(2x)) and note that uv(x) is increasing for x > e and lim, ,, o(x) = 1, thus,
vllog n) < 1 and logn + 1 > log?(n + n/(2log n)).

The last inequality follows from a counting argument similar to that in the proof of
Lemma 3.

For all £> 0, on the event B,({) it is true that n = T(y) = T,«(y) > ppk, thus,
o = pBk/(2log( pBk)). This completes the proof of (i).

In the proof of (i) and (iii), below, we assume that g:(P) # g,(P) for at least one
pair of policies f, f' €., because otherwise all claims are trivially true.

(i) Let 8, = min{|g,(P) — g-(P): f, f' €57, g,(P) # gr(P)) > 0. Then, Vf, '
&, either |g/(P) — g, (P)l = 8, or g{(P) = gf'(Pg. From Lemma 7(i), it follows that
3¢,(8,/2) > 0, {(€) > 0 such that for { < min{,(§,/2), {{e)} we have,

B(£) €Bi(¢) = {op: |g,(F)) — g (P)] < 8,72 [ s (B)) = hy(P)|
< e,VfE@,,t=b{‘,...,k>.
Let f € @(P', 2,). On the event B,({) it is true that, Vf' €2, C«,

g (P) >gf(ﬁt) ~6,/2 ng'(ﬁt) —8,/2>gn(P) — &y,
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thus, g,(P) = g,(P), by the choice of §;,. Therefore, Bi{{) c{wy: o(P', 9,
& (P, 9) 1P, 9) — WP, P < € ¥t = bf,..., k} and part (ii) follows with &, =
£(e) = min{£(8,/2), (e}

(iii) It suffices to show that for all ¢ > b¥,

(6.3) Dy N (P, 2) + .

Indeed, assume (6.3) is true. From part (i), for any € > 0 and { < £,(e), on the event
B({) it is true that #(P', @,) € @(P, 9,), and this, in conjunction with (6.3), implies
that 9,,, N @(P, D,) + I, Vi > b thus g(P, 2,..) = g(P, o).

We next prove (6.3). Let y = X(wk) We will show that DtH(y) N O(y; P, 2,) +
&.

Indeed, if T(y; P, @) = O(y; P, 2)), then m(t, w;) = a € T(y; P, 2) na(y),
ie, T(y,a) = log’ T(y) and T,,(y,a) = T{y,a) + 1, T, (y) = T(y) + 1. Hence,
usmg the inequality log*(n) + 1 > logz(n + 1), we get T, (y,0) =T(y,a) + 1=
log? T,(y) + 1 > log™(T)(y) + U = log® T,,,(y), ie, a € D, 4(y).

If T(y; P\, @) = O(y; P', @), then Ja € O(y,P 2,) and a & T(y; P, 2), ie.,
T(y,a) = logz(T(y)) + 1. Then for this g, regardless of the value of (s, wk) we
have T,,.(y, @) = Ty, @) = log>(T(y)) + 1 > log?(T(y) + 1) = log? T,,,(y),

a €D, ,(y).

To complete the proof of (6.3), note that D,,,(z) =Dfz),VzE€S,z#y. ©

In Lemma 9 below we prove the following monotonicity property (expressed via
events Gp): Yw=1,...,m, if Py includes an optimal policy in the beginning of
interval ¥, then this wﬂl also be true in the beginning of the next interval, otherwise
at least one policy strictly better than all policies in 9+ will be included in Zye .
Formally, let

G, = {wk: either g(P, Zyr ) > g(P, Dy}, ¥v = Lor
g(P, 2y ) =g(P, Dy) = g*(P) for some v}.

Then we have:
LEMMA 9. 3¢, > 0 such that 7o P[B({)G ] = o(1/k), as k — =, V{ < &,.

PrROOF. We assume that g.(P) = g.(P) for at least one pair f, f’ €%/, because
otherwise the claim is trivially true. For ¢t > §and y € § let

AT (y; P, @) = {a € A(y): 8(P, 2,) + h(y; P, 2))

<H(y.a; p,(a), h(3, P; )},

denote the set of improving actions for the unrestricted (unobservable) problem
(P, ) given the solution, g(P, Z)h(y; P, D), of the restricted (unobservable)
problem (P, 2,).
According to this definition, the set of improving actions “for the unrestricted
problem ( P, 27) given the solution for a specific policy f, is A" (y; P,{fD = {a € A(yx:
g/(P) + h(y; P) <Ay, a; p,(a), hy(y; P}
Let &, = min{#(y, a; p @), h(y; P —g(P) —h(y; P): fex, y€S, a€
A*(y; PASD # ) Note that 8, > 0.
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For & > 0 define events: E,(8) = N ,CX(8).

On the event E(8) it is true Vv =1,...,m, that either Vy € S, Va &
A™(y; P, 2,0), W(P, 2,) = WP, D) and Uy, a; o) > Ay, a; p(a), (P, 2,)) — 8,
Vi e If, or (P, 2,) + h(P, 2,), for some t, € I¥. We will refer to the first type of
conditions as conditions (E,).

For € > 0 choose: ¢, = ¢(e) such that Lemma 8(ii) and (iii) holds; £,(8), {;(8)
such that Lemma 7 holds; let £, = min(£,, ,(8,/2), £,(8,/2)).

To prove the lemma it is sufficient to show that, for { < &, and for k sufficiently
large, B,({)E(5,/2) C G, or equivalently,

(6-4) By ( g)Ek( 52/2)(—;/( = .

Indeed, suppose (6.4) is true. Then P7oP[B({)G,] < Prof[BU{IE(5,/2)] <
L P P[B(L)CH(8,/2)] Tt is shown in Lemma 7(iii) that, for ¢ < £,(8,/2),
P [ B({)CH(8,/2)] = o1 /k). Thus, the proof will be complete, because m = |57]
is fixed.

We next prove (6.4). Let ¢ < &,. Note that for such {, Lemma 8 holds. On the
event B,({) it is true from Lemma 8(ii), that g(P; Z,) is nondecreasing in ¢ for
t = bf, thus, B({)G, € B({)U™ EF, where

Ff = {op: g(P; 24 ) = 2(P; ) <g*(P)}.

Therefore, it suffices to show that B, ({)E(8,/2FF =@, Yv=1,...,m.
To prove the last relation, it suffices to show that for any v = 1,..., m,

(6.5)
B({)E(8,/2)Ff < {w,: 3y: A(y) = ppk, and A,(y) = O(log® &)},

because, for large k, {o,: Iy: A (y) > pBk, A,(y) = Olog? k)} = &, since log? k =
o(k).

We next prove (6.5). By definition of 47(y; P, 2, on the event Ff, 3y € §:
A*(y; P, Dx) # (. Consider such a y and let

A (y,a) = X UYZ(y,0) = 1,a e I\(y; P, 2,)),

telk

N(y,a) = ¥ YZ(y,a) =1,a € T,(y; &', 2,)).

telk

Then,
A(y) = ZaEA(y)Alv(y5a) + ZaEA’(y;P,@bky)Ai(yﬂ a) + Za(,f:A"(y;P,@ka)sz(y7a)'

For term A)(y, a), it follows from Lemma 8() that V¢ € I%, if Z,,,(y, ) = 1, with
a € '(y; P, 2,,,) for two different values of j =j,, j, < 7= pBk/Qlog( pBk)),
then this event cannot occur for any other value of j < r. Therefore, DI |
(Z,,,(y,a) =1, a eT(y; PV, 9, ) <2 Hence, A(y,a) < 2(bf,, — b /7 <
(41og( pBk))/(mpB) = Olog k), for all a € A(y). For term AZ(y, a) we need the

following three cbservations.
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(1) A™(y; P, 2) =A™ (y; P, 20), VeeIF Ulbl,), on the event B({)FS.
Indeed, consider periods ¢,¢ + 1 € I¥, with y = X,. Note that Vz # y, T,, (2) = T(2)
and T,.,(z,a) = T(z,a), D, (z) = D(z). In addition, from the definition of events
F¥ and Lemma 8(ii) it follows that g(P;9,,,) = g(P; 2,). Therefore, g(P, Z,),
h(P; @,) satisfy the optimality equations of (P; &, ,) for all z # y. This must also be
true for state y, because if the equations are not satisfied for some a € D, ,(y), it is
possible to construct a policy f€9,,, such that g(P; 2, ) > g(P; Z,). Thus,
WP;9,,,)=MP,2,), and A" (y; P,2,) =A"(y; P, Z,,), due to the uniqueness
of solution of the optimality equations.

(2) From the definition of the improving sets A*(y; P, 2,) it follows that, if
g(P, ) < g*(P) for some ¢, then there exists at least one policy f' & 2, such that
gp(P) > g(P, ), therefore there exists at least one state y such that AT (y; P, D)
# . Conversely, if g(P, 2,) = g*(P), then A*(y; P, 9,) = J for all y. In addition,
since g(P, 2,) is the optimal solution of (P, ), if a € A*(y; P, Z,) for some y € S,
then a €2,(y).

Now, using observation (1) we have that on the event B.({ YEF, if ae
A*(y; P, Zy), then a € A™(y; P, Dy (y)), thus a & Dye (). .

(3) On the event B,({)E,(8,/2)FF, for k large and ¢ small, D(y) N T(y; P, )
= &, ¥t > b*. To prove this, we will show that for ¢ € I}, large k and any y € S,
there exist @ € A™(y; P, 2,) = A*(y; P, 9,)5) such that U(y, d’; w,) > U(y, 2; w,),
Va € DJy). Indeed, note first that on the event B, ({)F} the following relations hold
forall t €I*, y € S, a € D,(y) and large &,

U(y,a; o) <Z(y,a; p,(a), h(y, P; 2,)) + 8,/2
<g(P;2,) +h(y,P;2,) + 8,/2
=g(P; Dy¢) + h(y, P; Dye) + 8,/2,
where the first inequality is due to Lemma 7(iD), with { < &, < £,(8,/2), the second
is due to the optimality equations of the restricted problem, and the third is due to

observation (1). In addition, on B,({)E,(8,/2)FF, the conditions (E,) specifying the
E,(8,/2) and the choice of §,, imply Va' € A™(y; P, 2,0,

U(y,d; »,) >£/(y, a';py(a’),h(y, P; 91,5)) - 8,/2
Zg(P;gbf)+h(y’P;gbf)+82/27 VtElf.
Thus, the observation follows using the definition of policy 7y € Ci.
When a € A (y; P, 9,,5) it follows from observation (2) that a & Dy« 1(y), ie.,

Ty (y, @) < log® bl ;. Thus, A2(y,a) < A(y,a) < Ty (y,a) < log? bk, < log® k.
For any a & A*(y; P, ) we have

N(y,a) < 2 WZ(y,a) =1,a &DJ(y))
telk
< L HZ(y,a) =1,T(y,a) < log? 1)
telf
< ¥ U(Z(3a) = 1 Ty, a) < log’ b, ) < log? b, < Iog? k.

telk
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The first inequality follows from observation (3), the second from the definition of
D/(y) and the fourth from Lemma 3. Hence, A (y) Loe anAi(y, a) +
Yoe a*(y: P, T ALY, @) + Loe 4o yp, Fu yA(y, a) = OQlog? k) and relation (6.5)
follows if we recall that on the event Bk( )y A(Y) = pBk forall y. o

We can now prove the following result:

PrROPOSITION 5. E7**[TP(e)] = ollog N), as N - =, Yy € Cp, VP €F and
e>

PrOOF. Recall that: TP( p, €) = L7/ 1(4,), where A, is the complement of the
event: A, = {w,: @(P*, 2,) c 2(P), Hh(Pk 2,) — h*(P)|l < €}. We will prove the
proposition by estabhshmg the following claims: Ve > 0, 3¢, = {(e) > 0 such that

(6.6) B({)G c A4y,
and
(6.7) ProP[B(1)Gy] = o(1/k), ask — .

We first prove (6.6). On the event G, it is true Vv = 1,..., m, that, if g(P, D) <
>"(P) then 3f €D @ g(P) > g(P, gbk) Since the total number of intervals ¥ is
= L}, at the end of the last interval it is true that 2, N @(P) # ), thus,

G, S {o: (P, 2) cO(P), (P, D) = g*(P), h(P, D) = r*(P)}.

From Lemma 8(ii) it follows that Ve > 0, 3¢,(e) > 0 such that, V¢ < £(e), for
sufficiently large k, B,({) < {w,: @(P*, 2,) c @(P, 9,), | P, 9k> — (P, Pl <
€}. Thus, (6.6) follows.

To prove (6.7), note that, P PIBL.()G,l < P PIBL)G,] + Pro PIB(O].
From Lemma 9 it follows that P’T0 PIB()G,]= o(l/k) Vi< &, Tn addition,
Pl PIBUN < L s o PToFIA (y) pBEk] + L, sPT[A(y) > pBk, Vy =
O,...,m 2, Iy, “)(a) (a)ﬁ > ¢, for some t > b¥ a e D(y)] From Proposition
2(i), by cond1t10n1ng on the state X, it follows that P> PIA (y) < pBk] = o(1/k),
as k — o,

Furthermore, on the event {A (y) > pBk, Vv = 0,..., m} it is true that, for 7 > b
T.(y) = pBk > p,Bt Thus, conditioning on the poss1ble values of T(y) = pBt,.
and T(y, a) = log? j, ..., j for a € D), using Remarks 1, and Lemma 4() (w1th C
¢, to note the dependence of the constants on the action g) it follows that, for k
sufficiently large,

Pt [A,(5) > Bk, Yo = 0., | 59 9a) = py(@)] > £,

forsome t > b¥ a e D,(J’)]

IA

r Z D> P, ol

aeD(y) t=bf I=pBt i=log?;

Pola) = po(a)| > (]

k t J
Y L L X Cets T C/(1-et)klemcalos’oph)

=
a€DLy) t=b¥ J=pPBt 1=log? aeD(y)

— Z Cae—caIOgZ(pB)/(l _ e—ca)kz—anlog(pﬁ)—c,llogk — O(I/k)
asD(y)
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Therefore, P> PIB. (] = o1 /k), as k — . Letting ¢, < min(£,, £,), the proposi-
tion follows. O

Theorem 3 is an immediate consequence of Proposition 3, 4, and 3.

THEOREM 3. () Vo, € Cg, VP €F and ¥x € S, a & O(x, P),

limsupET> Ty (x,a) /log N < 1/K(x,a; P), if (x,a) € B(P),
N-—-w

limsup EJ>"Ty(x,a) /log N = 0, if (x,a) & B(P).
N> )

(i) limsupy . R7(x,, P)/log N < M(P), Y, € Cy, YP € 2.

Proor. Consider a pair (x, a) such that a & O(x; P), and let € > 0. Recall that,
Voo, Ty(x,a) = LV Z(x, a) < 1+ T{(x, a5 €) + TP(x, a; €) + T e), Ve> 0.
Part (i) follows from Proposition 3, 4 and 5 when we let e — 0. Part (i) is a
consequence of (i) and Proposition 1. O

7. Extensions. In this section we consider variations and generalizations of the
problem described in §2.

MopgL 1 (GENERAL MoODEL). There exist parameter vectors 8(x, a) in parameter
spaces ®(x, a) with the following property. If X, = x, m(t) = a, then the one step
reward is a random variable Z, with distribution F(z; x, a, 6(x, a)) and the next state
is a random variable with support S™(x,a) and distribution P[X, , =y|X, =x,
wo(t) = al = p,(a; 6(x, @)). Parameters 6(x,a) arc generally unknown, while
§*(x, @) and the functional form of the distribution F(z; x, a, 6(x, @)) are known. Let
.Q = [G(X, a)]x e S,ae A(x)

MopeL 1.1. The model studied in §§2 to 6 is a special case of the above with
6(x,a) = pla), § = P, F(z; x,a, 6(x, a)) = F(z; x, a) and ElZ|X, =x, my(t) =al =
[zdF(z; x, a) = r(x, a), known.

MopeL 1.2. Consider model 1 with the one step reward Z, realized after the
transition in period ¢ takes place. If X, =x, m(t) = a, X,., =y, then Z, =r,(a),
where r, (a) are known numbers. This is also a special case of the general model,
with 6(x,a) =pla), §=P, PIZ, = r (&)X, =x, @) =0a, X,., =y]=p,(a),
Vy € S*(x,a) and r(x,a) = E[Z,|X, =x, m(t) = al = pa)r(a), where rfa)=
(r. (@), y €8).

In this case, all arguments used in the proofs of Model 1.1 go through, the only
difference being that the right-hand side of the average reward optimality equations
is now equal to H(x, a; q, h) = g(r,(a) + h).

With this modification, policy 7, defined in §3 is UM, the constants K(x, a; P)and
M(P) being the same as in §2.1. For all (x, a), a & O(x; P), A®(x, a; P) + (J if and
only if max, . g+, ,(ry, (@) + A*(y; P)) > 2% (x; P). Also,

B(P) = {(x,a): a & O(x; P), , max (rxy(a) + h*(y;P)) >=S/*(x;P)}.

e85 (x,a)

MobgeL 1.3. Consider Model 1 where Z, is independent of X,,, and follows a
discrete distribution with known finite support S7(x, a) and unknown parameter
vectors 07(x,a). This model is also a special case of the general model with
0(x, a) = [07(x, a), 67(x, a)], where 67(x, a) = p,(a). In this case, all arguments used
in the proofs of Model 1.1 go through, with the following modifications.
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The right-hand side of the average reward optimality equations is now expressed as
Ax,a;6,h) =E[Z] + 67h.

The history includes the past observations of the rewards, ie., w, =
(Xo, mo(0), Zy, ..., Xy, ok — 1), Z,_,, X,). The estimates of the transition prob-
abilities #7(x, a) are the same as in §2.3. In addition, estimates 87(x, a) of the reward
parameters can be defined, which satisfy a large deviations property analogous to
Lemma 4.

The likelihood ratio takes the form A, (6, 8,) = IT/_; 0{(Z)6(Y)) /(85(Z)6(Y,)).
From the strong law of large numbers, log A, (6,, 6,)/k — ¥(8,, 8,) = (6], 6]) +
1067, 6%), under 6, where I(-, - ) is the Kullback-Leibler information.

The constants K(x, a; 9), M(#) and therefore, the indices U(x, a; w,) have the
same form as in §2.1, with I replaced by I'. Also, B(8) = {(x,a): a & O(x; 8),
max $'(x, @) + max, . g+, ,h*(y; ) + > Z(x; 9)).

MopEL 1.4 (MULTI-ARMED BANDIT).  Consider the problem of sequential sampling
from # statistical populations, I, with the objective to maximize the total expected
reward over N periods. UM policies were first developed in Lai and Robbins (1985a)
in the context of a version of this problem; for related work see Katehakis and
Robbins (1995), Li and Zhang (1992), Yakowitz and Lowe (1991) and for the
discounted version of the problem, see Gittins (1979), Katehakis and Derman (1985),
Katehakis and Veinott Jr. (1987), Glazebrook (1991), Katehakis and Rothblum
(1996), Weiss (1994).

Consider the case in which the rewards associated with population II, are iid.
random variables following a discrete distribution with known support $7(a) =
{rf(a),...,rla)} and unknown probabilities §(a) = [6,(a)], 5, This model violates
condition (1.7) in Lai and Robbins (1985a). However, it is a special case of Model 1.3,
with state space § = {1}, action set A1) =4 ={1,...,n} and 8/(a) = py(a) = 1. In
addition, g*(8) = max, E,,[Z], k*(8) = 0 and T'(6,, 6,) = (6], 65).

Further details and direct proofs are given in Burnetas and Katehakis (1996).
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Appendix A

Proor oF LEMMA 1. (D It suffices to show that Vx € S, a & O(x; P), and g € 9(x, a),
O(x; Qlx, a; P, q)) = {a} if and only if .Hx, a; q, B*(P)) > F*(x; P).

Let Q@ = Q(x, a; P, q), where g € B(x, a). A key property that will be used in the proof is the following.
For fixed (x, ), any policy f € such that f(x) # a, gives rise to the same transition matrix under both P
and @, thus, g,(Q) = g(P) and h(Q) = h(P).

First, suppose Z(x, a:q, h*(P)) >.%*(x; P). Consider any f € #(P). Since a & O(x; P), f(x) # a,
thus, gAQ) = g*(P), (@) = h*(P), and Z(x, a; g, hi Q) = Hx, a; q, B (P)) > &% (x; P) =
Zx, fx); pf), h(Q)). Therefore, the average reward optimality equations are not satisfied for the
pair (x, a) under Q, thus g,(0) < g*(Q). For any f* €& such that f'(x) +a, g (Q) = g (P)gp(P) <
g*(Q), therefore, O(x; O(x, a; P, ¢)) = {a}.

We next prove that if S(x, a; g, h*(P)) <.*(x; P), then &#(P) < #(Q), therefore a is not the unique
optimal action under Q, thus, g & AG(x, a; P).

For all fe @(P), Hx, f{x);, pLflx)), h(Q) =L (x; P) thus, H(x, a; g, h Q) =Hx, a; q, W*(P)
<#%(x; P). In addition, #(x', '; Q,(a'), h(@Q) =, d'; p(d), B*(P)) < F*(x'; P), if not both x' =
%, d = g, Therefore, f satisfies the optimality equations under @, i.e., f € #((Q). This completes the proof
of ().
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Gi) From (D), it suffices to show that 3g € O(x, a): Z(x, a; q, K*(P)) >Z*(x; P), i and only if 4 > G,
whete d = r(x, @) + max, ¢ s« o £ (; P) — % (x; P). X h*(y; P) = h, ¥y € $7(x, a), then d = 0 and,
in addition, Z(x, a; g, K*(P) = r(x, @) + h =Hx, a; p(a), F*(P)) < Z*(x; P), Vg € O(x, a), therefore,
A®(x, a; P) = & and the claim is true.

We next consider the case where A*(y; P) = k*(y'; P) for at least two y,y € 5¥(x,a). Let W=
MAX ¢ g+(r gy P77V P), A" = miny ¢ 575 ) m*(y; P).

If d > 0, define ¢ € ©(x, a) as follows.

8, ifyeST(x,a),y#7,
q(y)= 1-29, ify:}_)3
0, ify&ST(x,a),

for some 0 < 8 < min{l/z, d/zv}, where v = W k%, z=18§T(x,a) - 1, and ¥ €
aIgMax, « gy, ol (y; P). Then Ax, a5, (P) =r(x,a) + (1 - 28 + L, . 3815 (y; P) =Z%(x; P)
+d — 8T, (¥ — I*(y: P) = *(x; P) + d — 820 > Z*(x; P), by the choice of 8. Therefore,
g € AB(x, a; P).

Next, consider d < 0. Then, for all g € 6(x,a), it is true that (x4 9, H(PY < r(x, a) + BF <
F*(x; P), thus, A®(x, a; P) = &.

Part (iii) follows from (i} and the definition of the set B(P). 0

PROOF OF LEMMA 2. (D)
L(P,Q; wy) = P;;'P[XO,AO,XI,...,XN]/P;;’Q[XO,AU,Xl,...,XN]

N-1
= 1!'—10 sz'P[AHXm Agseos Xieoy JPL X | X, Acl/

(Pr 2 AXy, Ag. - Xieoy JOL X 1K 4,7

N-1 Tnlx a)
= HP[Xk%—I]Xk’Ak]/Q[Xk+1le?Ak} = I]I: pr](Jc,a)(a)/qY](x,a)'
- =

The cancellation of terms is due to the observation that policy m selects actions using only the history;
therefore, given the history of states and actions up to time k, action A; is taken with the same probability
under both P and (. Also, by the comstruction of Q(x,a; P,q) we have that O[X,., X, Al =
PLX,.,1X;, A¢) if not both X, =x and A =a, thus, all terms except those corresponding to
(X, A;) = (x, a) are canceled as well.

(D) Since Y(x,a), j = 1,2,... arc independent and identically distributed, it follows from the strong law
of large numbers that log A{p (@), @)/k = l/kZ}k:1 log p.v (2, a)(a)/q}’}(x,a)] - W pla), @) as. (B, ), as
k — o, therefore, max, ¢ 5 | 10g Ag/by — K p.{a), q), as. (P, ;) for any increasing sequence by with
by — o, and the assertion follows. O

ProoF OF LEMMA 5. (i) For p > 0 define §( 1) € O(x, a) as follows:

= (T

where b(p) = Ly e s+(r. 0y Payl@de #". For €, > 0 let Hg(e), H{ p) be the hyperplanes
Hy(e) = {q € 0(x,a): Z(x,a;9,h) =Z(x,a;p(a),h) — e},
Hy ) = {g & 0(x,a): A(g: p(@). 4(p)) = —<(m)},

where () = —Mg(w); p@), G ) = KG(w), pla). Let Hz(e), Hi(e), Hy (), H;7 () denote the
corresponding half spaces, re., Hy(e) = {g: Hx,a; 9, 1) <%, 4; (), ) — €}, etc. We will show that
for all e > 0 sufficiently small there exists u = () > 0 such that Hz(e) = H; ( u€)). Then the lemma
will follow with g°(e) = g( ple)).

Fix € > 0. For all u > 0, Hy{e) and H,(p) are parallel hyperplanes, since, by construction of gl w,
Vq € 8(x, a),

a
Mg pl@) () = X Q(y)log@(*—)

= G,(r)

= ugh + log b(( )
= uZ(x,a;q,h) — pr(x,a) +logb(p).
In addition, () € H,(w), because Mg(pu); p(a), () = —KG(p), pla)) = —c(p)
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Hence, for Hgl(e) = H,(ule)), it suffices to choose u(e) such that §(u(e) € Hyle), 1re.
Ax, a; G ple), b)Y =H(x, a; pla), k) — e.

To show that such a u(e) exists, note that for u = 0 it is true that H(0) = 1 and §(0) = p,(a), thus,
Ax,a; G0), h) = Hx, a; p,a), h). Also

’

- {a), ifh =h,
lim q( .LL) - q(w) = pxy(a)/zy h(y)~@pxy(a) 1 (Y) °
o 0, otherwise,

where 2 = min, A(y). Thus, lim, .. Ax, a4, k) =2, =r(x,a) + h <F(x, a; pla), h). Therefore,
for any € <.#(x, a; p,(a), h) — Z,, there exists u(e) > 0 such that Z(x, a; G u(e)), h) =K x, a; p.(a) h)
— €, because A(x, a; g{ w), k) is continuous in w.

To prove that Hz(e) = Hy ( ue)), it suffices to show that p,(a) € Ha(e) and p () &€ HE( ule)). The
first is immediate, while for the second we note that

M po(a); p(@), 4 n(e)))

= (p(@), 4(u(€))) > 0> —H(G( u(e)), p(a)) = —c(p(<)).

(i) The proof is an extension of the one for Lemma 2 in Lai and Robbins (19852). Fix a pair (x, a) and

abbreviate Y,(x, @) with ¥,. For gy, g, € 8(x, a), let A{g,,g,) = IT_,q, ¥,/ 92, v,(x. o) S€€ also Lemma
2. Observe that

f
™~

log A(gq1,9,) = log[Ql.Y/(x,a)/qZ,Yj(x,a)]

“~
[
[N

i
2 21 (Y(x.a) = y)log[ a1, /a2, ] = ([ a1 22)-
J=1yes§

In addition, from the information inequality —I(p, ¢,) < 0 it follows that sup,, Mp: g1, 920 = Mp; p, q;)

= I(p, qy), therefore, expltI(f,, 4,0} = expleN(f;; £, 20} = sup,, ALy, q).
Hence, for all %, ¢,

Pp[/\(fr;p7Q) < -c+ bl/tﬁl(fnq) > (Ing + bl)/t]

= Pp[At(p,q) <ebe™ supA,(py,q) > keb2].
Py

After a change of measure transformation between p and g we obtain

(A1) PP[A,(p, q) <ebe™ supA,(p,,q) > ebzk]
b1

< eble'C’Pq[ sup A, (py,g) > ebZk} .
Py

Since @(x, a)R is a subset of a compact set, for any & > 0 there exists a finite collection of vectors
g% € 8(x,a), and neighborhoods #(8), i =1,...,m, such that U,#(8) 2 0(x,a), and #(8) =
{p, € 6(x, a): llp, — g™ < 6}

For all i=1,...,m and y € S*(x,a) and Vg € O(x, a), it 1s true that SUPy, c.y05)P1,/ Gy
< (g} + 8)/q,, thus,

()

P gy’ + 6

E| sop — 0| < |2 o1 4[5t (x,a)ls.
Ple-ﬁ/,'(a) qyl qYl
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Therefore, for any € > 0, selecting & < &/15™+(x, a)|, we obtain E [sup, ¢ 45 P1,y,/dv} <1+ & Vi=
1,...,m, thus,

(A2) P sup Afp,q)>ebk) <eT"%TE ) sup Adpq)
P1EA(8) eS8

t
) eMbZkﬁl(Eq[ sup pl’y‘l) ek (1 + €)'
IEVACIL
where the first inequality follows from the Markov inequality, the second from the fact that
Sup, =5y Mg, 1) < TT,_y SUP,, c sy P1,y,/qy,, and the third from the fact that random variabies Y,
j = 1, are independent and identically distributed.
Combining (A.1) and (A.2),

PlA(p,q) < ete™et supA,(q,q) > ebzk]
P

m
<ebet ) Pl sup A(pi,q) > e’k
=1 p1e#(S)

< meP1b2k e (1 + €)',

Selecting € so that e™°(1 + ¢) < 1, we obtam

)y Pp{Af(p,q)seble““, sup At(pl,q)>bzk]
t=I(dlog k+v)] p1€0(x.a)

= m1k_1 Z (e™°(1 + e))’ < m1k~1—d(c—log(1+e))’
t=|(d log k+v)]

where m; = me?1"?2Y(1 + €)7/(1 — e (1 + €)). Since d > 0 and ¢ — log(1 + €) >0 (by selection of
€), it follows that —1 — d(c — log(1 + €)) < —1 and the proof is complete.

(iif) Recall the definitions X p; g1, ¢2) = Kp,q2) — Hp.q) = L, c s+ oy Py log[qu/qzy], and pila) =
(1 ~w,)/z +w,f, where z = |S*(x, a)| and w, = ¢/(¢ + z); note that K1 — w,)/z = w,. From these it
follows that tA(pia); g, g2) = wilblqy, q) + 1Xf; q,, g2)), where blq. g2) = L, Iog{qu/qzy].

Hence, on the event {A(pXa); p, q) < —c} it is true that w(b(p, q) + tA(f;; p, ) < —ct, therefore,
since 0 <w, <1, b(p,q) + tMfip, @) < —ct/w, < —ct.

In addition, since blqy, g,) < bolgy) = — ¥, log g, and MF; g 42) < Kf. qy), Yy, it foilows that

W pla), q,) < w,[bo(qz) + t1(f,, qz)l
Thus, on the event {I{p{a),g) > (ogk + B)/t} it is true that w(by(q) + 1Xf, g)) > logk + B,

therefore, since 0 < w, < 1, bylg) + tKf,, @) > Qogk + B)/w, > logk + B.
Combining the above,

k
Y B AMAUa) P g) < o, H(Pia). q) > (logk + B)/1]

r=1(d log k>4 )}

k
= Z Pp[)‘(f;p=q)< Mc_b(p74)/t7l(f7Q)

t=1(d log k+y)}
> (logk + B —bo(9)) /1],

and the result follows from (i), with b, = —b(p,(a), g) and by = B — by{g). O

PrOOF OF LEmma 7. (i) For ¢ = b¥ and f €2, write the policy evaluation equations for f under P
and 13: as T(P)ay(P) =r(f), and Hf(f”)hf(ﬁ’) = r(f), respectively, where we have set hy(1; P} =
(L Py =0, and T(P),11 (P denote the corresponding invertible matrices, resulting from_this
normfllization. :['hese systems have unique solutions: hf(P) = [gf(P),hf(Z; P),...,his; P, @f(P‘) =
[gs(P), (2 P, ... h(s; POL.
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Let & =TI(P") — T{(P) and 6" = h(F) — h(P). On the event B,({) it is true that [|A]l < sz,
where s is the dimension of the matrices (number of states). Thus, from Theorem 5.8 of Noble and Daniel
(1977), with A = O(P) and R = A, it follows that, for ¢ < 1/(s]|(Hf(P))”lil), 185 <
ICATPY~ I e (PNsg/(A - (P)"'lls¢). Therefore, for any e > 0, selecting ¢ < {,(€) =
min; ., {1(e, ), where (e, f) = e/[sII(Hf(P))”lH(Hﬁf(P)” + &)}, it is true that ||8%]| < ¢, Vf € g,

(i) For the proofs of (i) and (iD), recall that under =, € Cz, U(y, a; w,) = u, (pIO-D(a),
(P, D), 1og t/T(y, ).

Fix §> 0, y € 5, a € D{y). From (i) it follows that, for £ < {,(6/3), on the event B,({) it is true that
IR(PY, 2) = B(P, @) < 8/3. Thus, | Ay, a;q, WP, ) — Hy, a; q, b(P, )| = lgP", 2,) —
gh(P, 2 < 8/3, ¥g, and

(A3) U(y,a; @) < uy,a(ﬁff”'”)(a), h(P, 2,y logt/T(y, a)) +8/3.

Since u,, ,(p, &, v) is continuous in p, there exists ¢/(8/3) > 0, such that, for £ < ¢{(8/3), on the event
B ()it is true that

(A4) u, (57 (a), h(P, 9,),l0g t/T(y,a))
<u, (p,(a), (P, ), log t/T(y,a)) + 8/3.

In addition, since w, (p,%,y) is continuous in y and u, (p, 1,0 =r(y,a) + ph =H(y, a; p, b, it
follows that there exists y; > 0 such that u, (p(a), i (P),ye) <Ay, a; pla), h(PY + 8/3 for all
f €7, therefore,

(A5) v, {2, (). h(P, 2,),v,) <Z(y,a;p(0), W(P, D)) + 5/3.

Select { < (,(8) = min({1(8/3), {{(8/3)) and take k sufficiently large, so that log k/log*(ppk) < v,.
Then, for all ¢ > bf and a € D(y) it is true that log¢/ T,(y,a)} < y,, and the claim follows from the
combination of (A.3), (A.4) and (A.5).

(i) Fix ve{l,...,m}, 8> 0,y €8, a € A(y). Let C,, = CX(8). From (i) it follows that, for {5 £(8/2),
on the event B({) it is true that [A(P, Z) — WP, D)l < 8/2. Thus, LA(y,a;q, (P, ) —
Ay, a9, (P, DN < 8/2, ¥g € O(x, a), hence, Uly, a; o) =u, A By (), h(PY, ) logt/TLy, a)
= u, (pINa), WP, D) log t/T(y, @) — 872, Vi & I*,

In addition,

u, o 57N a). h(P, 2)s10g /T (y, a))
2 u, (PO (a); (P, D), log bE/T,(y, a))

2 u, (B102(a); h(P, Zis), (log by + log B), /T(y. a)),

since £ > b¥, on the event C, it is true that (2, 2,) = (P, Z,x), and by construction of subintervals I¥,
we have that log b > log b¥, | + log B. Therefore, to complete the proof of (iii), it suffices to show that
P70 F[C, ] = o(1/k), where

C, = {wk: 3r EIf,uy,a(ﬁff(y"’)(a);h(P,Qbf),(log bE., + log ﬁ)/]}(y,a))

<,7(y,a;py(a),h(P;9b5)) — 6/2}.

Considering the p(])cssible values for T(y,a) = 0....,b% |, and using the definition of u, L) it
follows that C}, C U]b:ol Ct, » where

Cr,s = {g(y’“?q’h(})’gbi‘)) <#(y,a; p,(a), h( P; D))

~8/2,Yq € Fye | (pi(a);log B)}.
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(Recall that Fyx_ (pj(a);log B) = {g: K Pia) q) < log(b%,, + log B)/j}.) Thus, considering all possible

+107
policies f €F,r C& corresponding to the solution of the restricted problem (P; 9};5) we obtain
bl

PPl < ) Pref[G )
J=0

&
bys1

< Z Z Ppy(a){y(y,a; q, hf(P)) <=S”(y, a;py(a),hf(P))
fest j=0

—-8/2,¥Yg € Fblcﬂ,](ﬁ;(a);log B)}

=o(1/bf1 ) = 0o(1/k), (ask — ).

The second inequality follows using Remark 1. The first equality follows from Lemma 6 with replaced by
j, k replaced by b¥.; and B replaced by log 8 and the fact that m = l&] is finite. The last equality follows
from the observation that b% , ~ (v + 1)/(m + Dk, as k — o, Vv =1,..., m. Thus, (iii) follows with
&(8) = (8/2. O

Appendix B. This appendix includes graphical iflustrations for the computation of the constant
K(x, a; P) and the index U(x, 4; w, ). We fix a pair (x, s} with x € § ={1,2,..., s}, a € A(x) and consider
the cases in which [S*(x, a)l = 2,3. Then, for any P €, the parameter space O(x,a), for p.(a), is
respectively equal to {(g, 92): 91,42 > 0, g4 + g, < 1}, and 91,9293 91-92 > 0, g + g, + g3 =1}
However, for graphical simplicity, we will consider the projections ©'(x, a) of the parameter spaces that
are respectively equal to {g;: 0 < gy < 1} and {gy, g, > 0: gy + g2 < 1).

Exampii 1. Take S¥(x,a) = {1, 2} with r(x, a) = 3. In this example possible transitions from state x
under action & are into states 1 and 2 only and p(a) = (p{,1 — py) with p; € O'(x, @) = {g;: 0 <g; < 1}.

(i) For the computation of K(x,a; P) (see Figure 1) consider a P e with hf =hw*(1;P) =0,
K = B*(2; P) = —4, &*(x; PY =%* =2, p; = 1/3. We have:

(@) A®(x,a) = {g =g, 1 — q) r(x, @) + higqy + K50 — q) >&*); its projection is AQ'(x, a) =
{g:3/4<q, <1} # 3,

®) (x, @) € B(P) (since AB(x, a) # ),

(© Kpy, g0 = 1/3log(1/3q,) + 2/310g(2/(3 /(1 — 1)) it attains its minimum value (equal to 0) at

91 = P1»
(d) K(x,a; P) = inf(ql,qz)e AG(x, a: P){I((Ph 1= pih{gu g = infqleﬁe’(x,a P){I(Pp gt =X py, f]i))
= (.384.
(i) In the computation of U(x, a; w,) (see Figure 2) we postulate an observed history my with k = 150
and T;, = Tp(x, @) = 40, pla) = (p,1 —p;), p1 = 1/2, hy = A*(1) = 0, h, = h*(2) = —2. Then we have:
(2) with B8 =logk/T, = 0.1253, F(k,T,) = {g € 0(x,a): I(p,(a),q) < B}, and its one-dimensional
projection is F'(k, T;) = {q; € ©&'(x, a): 1/2log(1/2qy) + 1/21og(1/(2(1 — g < B} = [0.265,0.735] +
2,

0.57
K(x,a;P)
025+
0 0.2 04 0.6 08 i
AG'(x,a;P)

FiGURE 1. Computation of K(x, a; P} in Example 1.
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0.5
0.25+
0 0.2 0.4 0.6 0.8 1
F'(k,Tk)

FiGURE 2. Computation of U(x, 4; w;,) in Example 1.

(b) Fx,a;9,5%) = r(x,a) + gh* =3 - 21 ~ g) = 1 + 24,

(©) Ux, a5 wp) = max{l + 2g;: g, € F'Uk, T )} = 1 + 2-0.735 = 2,471,

Exampie 2. Take S*(x, a) = {1,2,3}, with (x, ) = 2. In this example plad=(py, pyt —p; —ps)
with (py, py) € O'(x,a) = {(g1, g,) > (0,00 gy + ¢, < 1}

iy We compute K(x, a; P) (see Figure 3) for a2 P €5 with W=rGP)=0, b =n* (2 P) = —4,
By = h*(3; P) = 6, &%(x; P) =* = 6 and p, = 1/3, P, = 1/4. We have:

(@) AB(x, a) = {g = (g1, q2, 1 ~ q; — q,): (x,a) + g + g, + B5(1 — g, — gy) >.%*, and its
two-dimensional projection: AQ'(x,a) = {0 < gy, g, < 1: 3¢, + 5¢, < 1) is represented by the shaded
region in Figure 3.

(b) (x,a) € B(P) (since AB(x, a) + ),

© Kp, q) = 1/3log(1/3q,) + 1/41log(l /4q,) + 5/1210g(5/(12(1 - g, — q,))) attains its minimum
value {equal to 0) at ¢ = p, and it has convex contours one of which is shown in Figure 3,

(@) K(x,a; P) = inf{l(p, ) (gy,q,) € A®'(x, a; P)} = 0.223 corresponds to the contour of I(p, q)
tangent to the hyperplane 3g; + 5¢, = 1 at g{ = 0.18, ¢J = 0.092.

(ii) In the computation of Ulx, a; w,) (see Figure 4) we postulate an observed history w, with k& = 150
and Ty = Ti(x, a) = 50, p(a) = (P, Py, 1 = Py = P, Py = 1/4, Py =173, hy = h*(1) = 0, h, = h*Q2)
= -2, kb, = B*3) =s.

o 03 07 0 03 i

Figure 3. Computation of K{x, a; P) in Example 2.
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0 0.2 0.4 0.6 0.8 1

FIGURE 4. Computation of U(x, a; wy) in Example 2.

Then we have:

(a) with 8 = log k/T;, = 0.1002, F(k, Ty} = {g € O(x, a): I(p(a), ¢) < B}, and F'(k, T} = {q,, @) E
©'(x,a): 1/41og(1/4¢,) + 1/3log(1/3g,) + 5/1210g(5 /(121 ~ ¢y ~ ¢,))) = B} (shaded convex region
in Figure 4).

b) F(x, a:q, h¥) = r(x, a) + gh* = 10 — 8¢, — 10q,,

() Ulx, a; w,) = max{10 — 8¢, — 10q;: (g, g,) € F'(k, T} =Zx, a; 9%, h*), where ¢* is the tangent
point of the boundary of F'(k,7;) and a-hyperplane of the form 8¢, + 10g, = const. In this example,
g¥ = 0.168, g5 = 0.196 and U(x, a; w;) = 6.696.

Note that there are two paraliel hyperplanes tangent to the convex region F'(k, 7,), one of which
maximizes and the other minimizes (x,a;q, i%). The index U(x, a; w,) corresponds to the former
hyperplane. Computationally, U(x, a; w,) is the solution of a nonlinear programming problem with linear
objective function and one convex and one linear constraint.

REMARK. When the MAB problem is viewed as a one-state MDP (sce Model 1.4 of §7), the calculation
of U presented in Examples 1 and 2 corresponds to the cases where the rewards are random variables that
can take two and three values, respectively. In the first case, the values of U, a; wy) = U, a; k. T{a))
are equal to the index g, 7, obtained in Lai and Robbins (1985a); c.f., function g,, on page 9, therein.
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