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Abstract-A model is developed for deploying emergency services in suburban areas. 
An area consists of several districts (townships) each of which has its own response 
units. Each district can employ mutual aid by servicing alarms originating in the others. 
These decisions are made dynamically. We consider two conflicting measures of per- 
formance: the area average response time and the steady-state deterioration in the ability 
of each district to handle future alarms originating in its own region. We propose a 
multiobjective Markov Decision formulation and demonstrate how efficient policies can 
be obtained by solving numerically a specific “small” problem. 

Keyvtsords: Markov Decisions, Emergency Services, Urban Modelling, Multiple Ob- 
jectives. 

INTRODUCTION 

We develop a model for deploying emergency services in suburban areas. An area typically 
consists of several districts (townships) each of which has its own response units to sen-ice 
alarms originating within the district. To achieve a better overall level of service the 
districts can employ mutual aid by servicing alarms originating in other districts even 
when those districts that receive aid have some units idle. However, by doing so the 
capability of a district to handle alarms that may occur within it (future alarms) may be 
reduced. Since districts are primarily responsible for their own areas, a significant de- 
terioration in the immediate level of performance in any district might not be acceptable 
even if it means a better overall level of performance. For this reason we consider two 
criteria in our model. The first measures the average response time to current alarms for 
the whole area. The second is a measure for the deterioration of the capability of each 
district to handle future alarms in its respective area if mutual aid is employed. For 
simplicity, we assume that an alarm is always served by a single unit and we suppose 
that the area consists of two districts only. These assumptions are easy to relax at the 
expense of increasing the state space. Further it is assumed that if an alarm occurs when 
all units are busy then an “external” unit responds to this alarm. 

The decisions of when to employ mutual aid are made dynamically before the next 
alarm occurs based on knowledge of the number of busy units and where they have been 
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deployed. This allows the necessary .-think” time for a single controller for the whole 
area. 

We provide a multi-objective Markov Decision model for this problem and demonstrate 
how efficient deterministic policies can be obtained by solving numerically a “small” 
specific example. 

Even though our model is nevv, Markov Chain and Markov Decision Models have been 
used in studying questions of emergency systems design and operations. Relevant work 
in this area includes references [ 11 to [8]. 

DESCRIPTION OF THE MODEL 

We make the following assumptions: (i) the occurrence of alarms in any district con- 
stitutes a stationary Poisson process and the processes corresponding to different districts 
are independent, (ii) the service time of each unit is exponentially distributed and different 
service times are independent, (iii) after servicing alarms. units return to the districts of 
their origin. 

A consequence of these assumptions is that the state of the system can be specified 
by a vector j = (j,, ,j,~,j~, .j~) wherej,,,, denotes the number of units from district m 

busy serving alarms in district n. Furthermore, when a stationary policy is employed, the 
evolution of the state of the system can be described by a continuous time tinite state 
irreducible Markov Chain. We can consider the following two indices of performance for 
the two district system. 
i) A measure of the steady state average response (travel) time. 

ii) A measure of the steady state deterioration of the capability of each district to handle 
future alarms in its respective region by its own units due to mutual aid. 
For the exact definition of the above indices we need the following notation. Let 
/Vi, denote the total number of units in district i (i = 1. 2). 

S = {j = (j,,,j12,j2,. j22). j,,,, 2 0, j,, T j,2 5 A’,. j2, -i j22 ~2 iv21 

S is the state space of the system. 
s, = 

so = 
A, = 
-I = pmn 

e,(j) = 
TmnLi) = 

P,(j) = 

P,,(j) = 

{j E S: j,, + j,: = !V, and j2, + jzz = Ar2}, states in which all units of the 
area are busy. 
S - Si states in which not all units of the area are busy. 
average rate of demand in district i. 
average service time of a unit from district m serving an alarm in district II. 
steady state probability for state j when a stationary policy n is employed. 
average response time for a unit in district m to reach an alarm in district n 
when the system is in state j. When 172 = n, these quantities can be obtained 
according to the “square root formula”[4]. For m # tz. an appropriate ex- 
tension is straightforward. For simplicity, we assume that T,,,,,(j) = TV m.n 

when j E S,. 

probability of an alarm occurring in district m when the system is in state j. 
Notice that 

P,(j) = 
A, 

AI + b + ~IIFI I + j12p12 + hlc~21 - j22cL22 
(m = 1. 2). 

probability that when in state j, the next event is a return of a unit of district 
m after completing service in district n. Then: 
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When the system is in state j E So. based on the number of free units available at least 
one of the following actions can be taken. 

clo: Service the next alarm by a unit in the district of the origin of the alarm. 
ul : Service the next alarm regardless of the origin with a unit from district 1. 
a~: Service the next alarm regardless of origin with a unit from district 2. 

Finally, let 
q,,,(j. a) denote the conditional probability of a future alarm occurring in district III 

given that in state j action a. was taken and an alarm in district m’ # m occurred. 
Note that by “future” we mean that an alarm occurs before the next return of a 
unit takes place. 

It is easy to find these probabilities. For instance, 

4i(j, a11 = 
XI 

Al + b +jllpll + (j12 + I)p-,I + jz,pz, +jzmJ_22 

Notice that transitions from state j involv,e a change of exactly one of the variables 
j,,(m, n = 1, 2) to j,,, + 1 or j,,,, - I. and changes to j,,,, + I are possible only if j,,,, 
+ j,,,, < N,,(m = 1, 2). The transition probabilities p(j/i, n) from state i to state j. given 
a feasible action 0 can be readily computed. As an example, consider the state i. = (2. 
1,0,2)whenN, = 4andN1 = 2. The only action feasible is alternative CI, and the 
following transitions are possible: 

to state \t-ith transition probabilit) 
(3, I, 0, 2) PI(j) 
(2, 2, 0, 2) P2(j) 
(1, 1, 0, 2) P,,(j) 
(2. 0, 0, 2) P,2(.i) 
(2, 1, 0. 1) P22($ 

For each state and action taken we define the following “costs”: 
i) Expected response times: 

C’(j, ao) = Pl(j)T,,(j) f Pl(j)Tz2(j) if j E So. 

C’(j, a11 = P,(j)T,,(j) + P2(j)T12(j) if j E So, 

C’(j. 4 = P,(j)T2,(j) t Pz(j)Tz2(j) if j E So, 

and 

C’(j) = (P,(j) + P2(j))T ifjfS, 

ii) Expected incremental increase in response times for the individual districts to handle 
future demands by their own means in their respective regions due to mutual aid. 
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If j E So, define: 

C’(j, a01 = 0 

“(j”,) = i 

Pz(j)4,(j.a,)[T,,(_i,,,j,2 + I,jz,,_&) - r,,(j)] ifj,, +j,, + 1 <:V, 
~~(j)q,(j,a,)IT2,(j,,,j,1,j2, + l,jz2) - T,,(j)] ifj,, f j,? + 1 = N, 

“(j’az) = { 

~,(j)q~(j.az)[T21(jlI,j12,j2, + 1,jz2) - T??(j)] ifj2, +jz2 + 1 <iVz 
P,(j)42(j,ul)[T,2(j,,,jlZ,j_ 71 + l,j~) - Tzz(j,)] ifj2, + jz2 + 1 = iV2 

and if j E S, , we define C’(j) = 0. 
Notice that C’(j, a) represent a measure of “opportunity cost” associated with taking 
action a when the system is in state j. 

COMPUTATION OF EFFICIENT DETERMINISTIC POLICIES AND 
NUMERICAL RESULTS 

When a deterministic policy T is followed, the cost structure defined in the previous 
section implies the following two measures of performance. 

1) Average response time: 

+‘(7i) = C C’(j, z(j))e,(j). 
jd 

2) Average opportunity cost due to mutual aid: 

+‘(Ti) = C C"(j, T(j))e,(j). 
.iss 

A deterministic policy assigns actions as a deterministic function of the state[9]. Thus, 
r(j) above denotes the action prescribed by policy n in state j and by convention if j E 
S,, we set C’(j, n(j)) = C’(j) and C’(j, T(j)) = 0. 

A policy no is said to be efficient if and only if there is no other policy 7 with the 
property that: 

with strict inequality holding for at least some k. Note that under deterministic policies 
the resulting Markov Chain is irreducible. In [lo]. [ll], it was established that efficient 
deterministic policies can be obtained from the extreme efficient points of the following 
multi-objective linear program (MOLP): 

min{C C’(_i, a).y~.~, 2 C’(j. U)-rja} 

j.rr j.0 

subject to 

C Xiu - C, xx&i/j, a) = 0 ieS 
0 j.a 

z -rirr = l 

-Kilt 2 0. 
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Now the (MOLP) can be solved by standard methods[ll]. [13], [14]. We folllow the 
approach of forming a single objective linear program by multiplying the first objective 
by a parameter A and the second by (1 - A) to form a single scalar objective. 

We then employ a parametric cost analysis. 
For the specific example of two districts, we developed two computer programs. The 

first one converts the model into the corresponding (>lOLP) problem and writes out the 
objective functions, the constraint matrix and the right hand side. The only input it requires 
are the values of the parameters N, , Pi?, A,, h3, k,, , CL,:, pzl, p12 and the average response 
times. This program is very useful because even for a small problem such as N, = 2 and 
Nx = 2, there are 36 constraints and 54 variables. Writing these constraints by hand would 
be a very tedious task indeed. 

The second program takes as input the output of the first program. It combines the 
two objectives into one by multiplying the first by A and the second by (1 - A), obtains 
the optimal solution and then determines, through sensitivity analysis. the range of A for 
which this solution remains optimal. All optimal solutions (and thus all efficient extreme 
points of the problem (MOLP) which give all deterministic efficient policies for the model) 
are obtained for A E [O, 11. Note that any edge joining two adjacent efficient extreme points 
of the problem (MOLP) is also efficient, [14]. Points on such an edge give stationary 
efficient policies but since for our model only deterministic policies are of practical use. 
these are not determined. 

We present a solution for N, = 2 and N, = 2. The other parameters are chosen 
arbitrarily as 

Al = 4.0 Al = 5.0 A,, = 8.0 

p.12 = 7.0 ~121 = 6.0 p.22 = 8.0 

tl,(0) = f,?(O) = tzl(0) = tzz(0) = 5.65 

t,,(l) = 3.04 t,,(2) = 2.90 

f,?(l) = 4.20 t,3(2) = 3.92 

t?,(l) = 4.85 t?,(2) = 4.68 

tzz(l) = 3.60 rzz(2) = 3.20 

where the response times are obtained by the formula 

Tmn(s) = tmn(N, - jn11 - jmz) 112, n = 1, 2, s E S. 

Table I 

States belonging Alternatives Action specified by the efficient policy R; 
to the set SO. available RI R2 R3 R4 R5 Rb R7 RS R9 RIO RI, 

(0, 0, 0. 0) 
(0, 0, 0. 1) 
(0, 0, 17 0) 
(1. 0. 0, 0) 
(0, 1. 0. 0) 
(1, 0, 0, 1) 
(0, 1, 0. 1) 
(1. 0. 1, 0) 
(0. I, 1, 0) 

Note that policy RI minimizes the second objective while policy RI, minimizes the first one 



338 E. BELTRAW. S. DURI\IO\IC. and MICHAEL K;\TEHAKIS 

For these values of the parameters eleven optimal solutions were obtained. These 
solutions together with the values of the objectives and the range of A for which they 
remain optimal, are given in Table 1. The eleven corresponding efficient deterministic 
policies for the model are summarized also in Table 1. 

I. 
2. 

2. 

1. 

3 

6. 

7. 

-8. 

9. 
JO. 

Il. 
12. 
13. 

1-I. 
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