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We consider a multiobjective, average reward, Markovian decision process and its relationship with an associated multiobjec-
tive linear program. In particular, we characterize the complete sets of efficient policics, efficient deterministic policies, and
efficient points in the objective space. The latter characterization is achieved with the help of finite sets of basic efficient
deterministic policies which can be constructed by known algorithms. In addition, we discuss the relationship between our
definition of efficiency which depends on the initial state distribution, and another definition which is independent of the initial
state. It turns out that these two definitions are, in a sense, equivalent in the unichain case, but not in the general multichain case.
Our definition leads to a useful interpretation of the associated linear programs.

1. Introduction

The purpose of this paper is to clarify the relationship between efficient policies in a multiobjective
average reward Markovian decision process (MDP, for short) and the efficient points of a related
multiobjective linear program.

For single objective MDPs the relationship between optimal policies and solutions of related linear
programs are well known (e.g. see Derman [2], Denardo and Fox [1], and Hordijk and Kallenberg [9]).
In the past decade there has developed substantial interest in multiobjective MDPs; for a recent review
of many of the relevant researches we refer the reader to Heyman and Sobel (8, ch. 6]. The discounted
reward MDP has been studied by Henig [7]; also, Furukawa [6], Shin [13] and White and Kim [14)
developed successive approximations and policy improvement type algorithms for constructing efficient
policies. The connection with multiobjective linear programming is discussed in Viswanathan et. al. [15]
and Durinovic [3].

However, the average reward case is technically more cumbersome, and (to the best of our
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knowledge) has not been treated fully in the literature. In this paper we derive the following main
results: (i) the characterization of the whole set of efficient policies and of its relationship with the set of
efficient points of a related multiobjective linear program (Theorem 3.5); (ii) the characterization of the
whole set of efficient points in the objective space of the multiobjective MDP with the help of a finite
set of basic efficient policies (Theorem 3.9); and (iii) the characterization of all efficient deterministic
policies (Theorem 3.7).

The above results are obtained by appropriately combining the MDP techniques of Hordijk and
Kallenberg [9, 10] and Derman [2] with the techniques of multiobjective linear programming such as
those of Iserman [11] and Yu and Zeleny [16]. While in the unichain case our results can be derived in a
simple fashion, the possibility of multiple ergodic chains complicates the analysis, and introduces a
number of pitfalls, some of which are demonstrated by the counterexamples given in Appendix A.

2. Definitions and preliminaries

A discrete Markovian decision process I' is observed at discrete time points t=1,2,.... The state
space is denoted by E = {1, 2, ..., N}. With each state i € E, we associate a finite action set A(i). At
any time point ¢ the system is in one of the states and an action has to be chosen by the decision-maker,
If the system is in state i and action a € A(i) is chosen, then an immediate reward r(i, @) is earned and
the process moves to a state j& E with transition probability p(j|i, a), where p(j|i,a)=0 and

- P(jli,a)=1.

A decision rule D" at time ¢ is a function which assigns a probability to the event that action a is taken
at time ¢. In general, D' may depend on all realized states up to and including time ¢ and on all realized
actions up to time #. A policy  is a sequence of decision rules = = (D', D% ..., D’,...). For a Markov
policy we require that the decision rule at time ¢ depends only on the state at time ¢,¢=1,2,.... A
policy ar is called stationary if all decision rules are identical, that is, D= D for all ¢. In this case, D,,
denotes the probability of choosing action a in state i. A deterministic policy is a stationary policy with
nonrandomized decision rules. Let C, C(M), C(S) and C(D) be the sets of all policies, the Markov

policies, the stationary policies, and the deterministic policies, respectively.

Let X, be the state at time ¢ and Y, be the action at time ¢ and p_(X,=j, Y,=a| X, =1i) be the
conditional probability that at time ¢ the state is j and the action taken is a, given that the initial state is i
and the decision-maker uses a policy 7. For any policy 7 and initial state i, we define the average
expected reward over the infinite horizon by

(i, w)—llmlnf—EZp,(X =j,Y,=a|lX,=i)r(j,a).

r-l/a

A policy 7* is average optimal in I' if ¢(i, m*) = max. ¢(i, m) for all i € E. It is well known that there
exists an average optimal deterministic policy (e.g. see [2, p. 25]).

Let B =By, B,, - - -, By] be a given initial distribution, that is, B, is the probability that X, = i, where
B, =0 for all i € E and 2, B, =1. For any policy 7, define ¢(B, 7) by

d(B, m) = 2 Bi(i, m) . (2.1)

We shall say that «° is B-optimal in T'if ¢(B, #°) =max_ ¢(B, 7). Clearly, an average optimal policy
is B-optimal, but not conversely.

For any pohcy € C and any posmve integer 7, we denote the average expected state-action
frequencies in the first T periods by x”() according to the definition
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1 &N
T . .
xj(m) = 7’2”5::1 Bip(X,=j, Y, =a|X,=i), 2.2)

for all a € A(j), jE E. Let X(m) denote the set of vector-limit-points of the sequence {x"(m), T =
1,2,...}. Note that X(7r) is nonempty. Now, define

C,={me€ C| X(m)is a singleton} .

It is well known (e.g. see Kallenberg [12, p.135]) that C(S) C C,. If we denote by x(=) the unique
element of X() for any 7 € C,, then from the definition of ¢(i, 7) and (2.1) we have

&(B, m) = }?;x,,.(w)r( j, a). (2.3)

Let L(C)={x(m) € X(m)| mw € C} and let the sets L(C(M)), L(C,), L(C(S)), and L(C(D)) be
defined analogously.

The linear program usually associated with the average reward MDP is the following (see [1], [2], [9])
max 2 r(i, a)x,,

subject to
2 ;= p(jli,a)x, =0, JEE,
Ea:xia-*-lz(aij—p(jli’a))yia=Bj’ IEEa

Xias Yia=0; I€E,a€ A(i). (P)

Let F denote the set of all feasible solutions of the above linear program, and for (x, y) € F define'
S ={ieE|X, x,>0} and S,={iEE| Y,x,=0and L _y,>0}. In addition, let X = {x| there
exists y such that (x, y) € F}, and Ext(F), Ext(X) will denote the sets of extreme points of F and X,
respectively. We shall use the following well-known results.

Theorem 2.1 (Derman [2], Hordijk and Kallenberg [9]).

L(C(D)) = L(C(S)) = L(C(M)) = L(C,) = L(C) = X,

where A denotes the closed convex hull of a set A.

Corollary 2.2. For every w € C there exists an equivalent or better 7 € C, in the sense that ¢(B, m)<

&(B, 7).
With a given (x, y) € F we can associate a policy 7 € C(S) defined by
Xilx;, ifieS,,a€ A(i),
Dla(x’ y)= yla/yi’ lftESy,aEA(i), (24)
arbitrarily, if iZS,US,,

'Here x(y) is treated as a vector whose components are x,(y,,), arranged in the natural fashion. We shall not always
differentiate between row and column vectors, this identification should be made in a manner consistent in any given equation.
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where x, = Zax,,, any y, = Z,,y,.,,.

Furthermore, for (x, y)EFif i€ S, let A (i)={a€ A(i)|x,>0}, and if iES let A (i)={a€E
A(i)| y,,>0}. Now define a family C, (D) of deterministic policies (x, y) which chooses an arbitrary
element a € A (i) (A,(i)) if i € S,(S,) and an arbitrary a € A(i) if iZS,US,.

Conversely, with every m € C(s) we can associate a point (x(7),y(m)) € F deﬁned by

xla(w) = [BTP*(w)]ichn A4S Es aE A(l) 3 (25)

Yiu(m)=[B"D(m) + y'p*(m),D.., i€EE,a€A(®), (2.6)

where P*(#) and D(7) are the stationary and the deviation matrices, respectively, of the Markov chain
induced by 77, and v is an appropriately chosen vector. For detailed definition of this transformation and

the discussion of its relationship with the transformation (2.4), we refer the reader to Hordijk and
Kallenberg [9].

Theorem 2.3.

(i) If a policy m, € C, is B-optimal and x(m,) is the corresponding vector limit point of state-action
frequencies, then (x(m,), y) is optimal for (P), for every y such that (x(m,), y € F.

(ii) If (x, y)EF is an extreme optimal for (P) and =& C(S) is constructed via (2.4), or if
m=7(x, y) € C, (D), then m is a B-optimal policy. In the former case the conclusion holds even if
(x, y) is not extreme.

Remark 2.4. In the case when B;>0, for all i € E, the above theorem is proved in [9]. In the case
when B, =0, for some i € E, a detailed proof can be found in Durinovic [3 pp.28-35], and an outline is

given in Appendix B. Note also the x and y above are now treated as Z,_l | A(i)|-dimensional vectors
with components x;, and y,,, respectively (| A(i)| is the cardinality of A(i)).

Now suppose that instead of one system of rewards we have m systems, that is, 7* = (r*(i, a) | (i,a) EE
X A(i)}, where ke m={1,2,...,m} and r*(i, a) denotes the reward in the kth system corresponding
to the state-actlon pair (i, a). Now for each k € m we can define ¢*( 8, 7) via (2 1) by smply replacing
r(j, a) with r*(j, a). For each k € M we can find an average optimal policy 7}; however, in general
m} # o if k[ and there does not exist one policy that is optimal for all the m systems. We are thus
led to consider efficient or nondominated policies in such a multiobjective MDP. In particular, we shall
say that a policy #* € U (where U is some subset of C) is B-efficient with respect to U if there does not
exist 7 € U such that

(B, )= ¢X(B,m*) forallkEM,

with strict inequality holding for some k, € M. We shall denote the set of all such B-efficient policies by
E(U).
With the above multiobjective MDP we shall associate the following multiobjective linear program:

max | (r'x,r’x, ..., r"x), (MP)
x,y)E

where r‘x = 2, .7 (i, a)x,, for every k€ M The pomt (x%, ¥°) € F will be called efficient for (MP) if

there does not exist (x, y) € F such that r *x = r*x® for all k € M, with strict inequality holding for some

ke M. The set of all efficient points for (MP) will be denoted by E(F); also let E(X)={x€E

x| (x, y) € E(F) for some y} (note that X is a bounded polyhedron).
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Theorem 2.5. (Is<:rrnann0 [1%]). A point (x°, y°) € E(F) if and only if there exist positive weights
)«k(z xAr = 1) such that (x, y°) is an optimal solution of the linear program

max 2, A, r*x (Py)
k
subject to (x, y)E F.

Note that for every 7 € C, we know from Theorem 2.1, and (2.3), that x(#) = x for some x € X and
hence

¢“(B, m) =2 r*(i, a)x, (m) = r'x (2.7)

for every k € M. Thus, the values of the objectives in (MP) correspond exactly to the payoffs ¢*( 8, )
in the multiobjective MDP.

Theorem 2.6. (Yu and Zeleny [16]). Let Ext(X)N E(X) = N,,, then N, D E(X). Thus, all efficient
points are generated by the extreme points of E(X), since they belong to its closed convex hull.

Remark 2.7. Hordijk and Kallenberg [10, p. 282] used an alternative definition of an efficient policy,
namely, they called 7* efficient if there does not exist a policy 7 € C such that

", )= ¢*(i, 7*) for aAlkEMandi€E, (2.8)

with strict inequality holding for some k, € M and i, € E. We shall call such a policy 7* u-efficient,
where u stands for uniformly. In Appendix A we show that u-efficiency and B-efficiency are different.
However, (2.7) suggests that for the purpose of analyzing the multiobjective MDP with the help of the
multiobjective linear program (MP), B-efficiency is perhaps the more natural solution concept.

3. Main results

Our aim is to characterize E(C) and, equally importantly, the set E,(C) which is its image in the
objective space. More precisely, E,(C)={¢=(¢ L...,¢™)|there exists w&€E(C) such that
¢*(B, m) = ¢* for all k € M}. It will be convenient to introduce the following notation and conven-
tions. We shall say that a p-dimensional vector v = (>)0 if every component v,=(>)0,i=
1,2,..., p. Furthermore, we shall consider an m X I | A(#)|-dimensjonal matrix R whose rows are
r',r% ..., r™ the rewards of the m single-objective MDPs (treated as Y., |A(i)|-dimensional vectors).
Now, with every vector A=(A,...A,)=0, (X, A, =1) we can associate a weighted MDP, denoted by
I'()), which is identical to the original MDP in the transition law, but whose reward vector is defined by

r*=AR=2 A0, (3.1)
k
The payoff function ¢*(B, 7) of I'(A) is defined as in (2.1).

Lemma 3.1. Let A=(A,...A,)>0 and Ziv_, A.=1, and =° be a B-optimal policy of I'(X), then
7’ € E(C). (Established independently in [10]).

Proof. Suppose not; then there exists a 7 € C such that o (B, #)= (B, =°) for all k € M, with strict
inequality holding for some k, € M. It is easy to see (with the help of Theorem 2.1) that this leads to a
contradiction of B-optimality in I'(A). O
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We can now prove the following result.

Theorem 3.2.

(i) If (x° Y °Y€ E(F) and x° —x('rr ) for some ©° € C,, then =" € E(C).
(it) If #° € E(C) N C,, then (x(m°), y) € E(F) for all y such that (x(w"), y) € F.

Proof.
(i) By Theorem 2.5 there exists A= (A, ... A,,)>0, with ZA A, =1 such that

ARx°=ARx for allx € X.
Hence by Theorem 2.1, and (2.7),
¢ (B, °)= ¢*(B, m), for all mE C,.

Now w’ is B-optlmal in I'(A) because otherwise there would exist some 7 € C such that ¢*( B, 7) >

N B, 7 ) which, in view of the above and Corollary 2.2, is impossible. Hence, 7’ € E(C) by Lemma
3.1.

(u) The existence of a vector y such that (x(#"), y) € F follows from Theorem 2.1. Suppose
(x(7"), y) &€ E(F), then there exists (£, §) € F such that

r*i = r'x(#°) for allk € M,

with strict inequality holding for some k, € M. Again, by Theorem 2. 1 there exists a policy 7 € C, such
that £ = x(77); hence, the above and (2 7) imply that ¢*(B, #)= ¢ (B, »°) for all kE M, wnth strict
inequality holding for some k,. Hence, 7 & E(C) which yields the desired contradiction. O

One consequence of the preceding theorem is that the transformation (2.4) and its inverse,
(2.5)-(2.6), preserve efficiency, which can be seen from the following result.

Corollary 3.3.

() If #° € E(C)N C(S) and (x°, y°) € F is constructed from =° as in (2.5)-(2.6), then (x°, y°) €
E(F).

(i) Conversely, if (x, y) € E(F) and =w(x, y), as in (2.4), then w(x, y) € E(C).

Proof. Part (i) follows from part (ii) of Theorem 3.2. Part (ii) can be easily proven with the help of
Theorems 2.3, 2.5, and Lemma 3.1. O

Lemma 3.4. For every w € E(C) there exists an equivalent 7 € C,N C(M) in the sense that $*(B, m) =
¢ (B, #) for all kE M.

Proof. Note that for any k € M and x(7) € X(=)

d5(B, m) < r’x(7) = r*x(7) = ®*(B,7) for some 7 E Co
where the first equality above follows from Theorem 2.1, while the second equality follows from (2.7).
Now, since 7 € E(C) a strict inequality in the above is impossible. For every 7 € C, there exists a

7 € C(M) such that x(77) = x(7) (see [2], [10]) which completes the proof. O

The next result characterizes the set E(C) of all efficient policies, and is analogous to Theorem 2.5.



S. Durinovic et al. | Multiobjective Markov decision process 221

Theorem 3.5. A policy =" € E(C) if and only if there exists a positive vector A (Ays .- 5A,,) with
Ek)tk =1, such that =° is B-optimal for the single objective MDP with rewards r*.

Proof. Sufficiency follows simply from Lemma 3.1 (and was established independently in [10]). To
establlsh the necessity take any 7’ € E(C), then by Lemma 3.4 there exists an equivalent policy
m* € C, which must also be p-efficient. Hence, by Theorem 3.2 (x(7*), y) € E(F) whenever
(x(w*), y) €E F, and now Theorem 2.5 implies that (x(#*), y) is optimal for (P,) for some A>0
(Z A =1). Hence by an argument such as that used in the proof of Theorem 3.2(i) =* is -optimal
in I'(A). Thus, #° is also B-optimal in I'(A), as required. O

Corollary 3.6. Suppose that w° € E(C) and that the initial distribution vector B° >0, then ©° remains
B-efficient for any B =0 with % Bi=1.

Proof. Since B! >0 for every i € E, we have that 7° is uniformly optimal (i.e. independently of the
initial state) in some weighted single objective MDP with all weights strictly positive; hence, 7’ is
B-optimal in this MDP and the result follows from Theorem 3.5. [

The next two theorems show it is sufficient to consider 3 ﬁmte set of efficient policies. In particular let
Ext(F)N E(F)={(xy, 1),...,(x,,¥,)} and D= U’ s=1 Cy, (D) (see Section2). Note that DC
C(D). The next theorem shows that D constitutes the set of all deterministic efficient policies.

Theorem 3.7. D = E(C)N C(D).

Proof.

(i) By construction, if # € D, then # € ¢, , (D) C C(D) for some s. Also by Theorem 2.5 (x,, y,) is
optimal for (P,) for some A >0. Now by Theorem 2.3(ii) 77 is B-optimal in I'(A); hence, it follows from
Theorem 3.5 that 7 € E(C). Thus, D C E(C) N C(D).

(ii) Suppose that 7+ € E(C) N C(D), and let (X, y) € F be constructed via (2.5)—(2.6). It can be
easily checked that the proof of Theorem 4.3.4 of Kallenberg [12] remains valid even when 8 = 0. Thus,
(%, y) € Ext(F). Next we shall prove that (£, y) € E(F). If the latter were not so, then there would be
some (%, J) € F such that *% = r*# for all kK € M, with strict inequality holding for some k, € M. Thus,
for any vector A > O(E « A =1) we have

> s,

But it follows from (2.5) that £ = x(7), and there exists some 7 € C, such that x(7) =X. Substituting
these in the above yields ¢*(8, 7) > ¢*(B, #), thus contradicting the hypothesxs a € E(C). Hence,
(%, ¥) € Ext (F) N E(F), and by definition of D, C,(D) C D. However, since 7 € C(D) it follows from
(2. 5) (2.6) that 7+ € Cy(D), implying that # € D. This completes the proof. [

The final results derived below show that there are finite subsets of deterministic policies which, in a
special sense, generate the whole efficient set in the objective space.

Lemma 3.8. For every x, € Ext (X) N E(X) there exists a policy m, € D such that x, = x(,).

Proof. By Kallenberg [12, p.138] there exists m, € C(D) such that x, = x(m,). Since x, € E(X) by
Theorem 3.2(i) we have =, € E(C), and hence by Theorem 3.7, m,€D. O

Now we would like to construct a deterministic policy 7 from a given point x € Ext(X) N E(X). Since
we know that x = x() for some 7 € D and



222 S. Durinovic et al. | Multiobjective Markov decision process
T
Xja = X (m) = (B P*("T)]j'”;a > (3.2)

Where P*(1r) is the stationary matrix induced by ar, it follows from (3.2) that if j JE S, then x;, = 0 for
all a € A(j) except one a;. Hence, the policy 7 € D has to choose the action a;in the state j for every
JES,. For j S, we have that x;, = 0 for all a € A(j). In order to find the pohcy s rule at state j S,
we have to examine the set {r E C(D)|m, oy = 1if j€ S}, if for some = in this set [B P“(fn-)]l'n-,a —0
for all a € A(j) and j &S, then = is the policy required, that is, x = x().

Without loss of generality we let (see Theorem2.6) N,, = {x,,...,x,}, with n<p, and for each
s=1,...,n we let 7w, be constructed from x, via the above. Now we shall refer to a set D, =
{m,...,m,} C D as a basic efficient set of policies (recall that D = C(D) N E(C)).

Theorem 3.9 Let Dy ={m, m,,...,m,} be a basic efficient set, as defined above, and choose an
arbztrary d=(¢',...,0™€E Ey(C), then there exist non-negative numbers a_,s=1,...,n, such that
s=1,=1, and

¢*= 2 a,d*(B, m,) for allk € m.
s=1

Proof. By definition of E,(C) and Lemma 3.4 there exist 7 € E(C) and 7 € C, such that for every
keM

¢ = o"(B. m) = ¢(B, #) = r'x(#). (3.3)
Thus, # € E(C). Since x(7) € X, there exists y such that (x(#), y) € F, and by Theorem 3.2(ii) it is
also in E(F). Now, by Theorem 2.6 there exist non-negative numbers a,,s=1,...,n, such that

,_1 a, =1 and for x, € N,, the relation

x(7) = Za,x, (3.4)

s=1

is satisfied. Hence from (3.3) and (3.4) we have

¢* Za(rxs) Za(rx(w»

s=1
= 21 a,¢*(B, m) forallkEM. (3.5)

The fact that x, = x(,) follows from the definition of D, and the last equality is simply (2.7). This
completes the proof. [

Remark 3.10. The above results indicate that the difficulty of characterizing either E(C) N C(D) or
E(C) is comparable to the difficulty of generating all extreme efficient points of the multiobjective
linear program (MP) via one of the standard algorithms for this purpose (e.g. see Yu and Zeleny [16]).
However, in the two-objective case a more efficient algorithm for characterizing E,(C) has recently
been proposed by Filar and Lee [5].

Appendix A

In Section 2 we introduced two concepts of efficiency in multiobjective Markovian decision processes:
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the u-efficient policy and the B-efficient policy. We shall now comment on the relationships between
these two definitions.

Remark A.1. Let B=(B,,..., By) with g, >0for alli=1,2,..., N, then it can be easily seen that a
B-efficient policy is also a u-efficient policy.

Remark A.2. If 8, =0 for some i, then Remark A.1 no longer holds, as can be seen from the following
example. Suppose B =(0,1) and we have the two MDP processes:

k=1 i=1 i=2
3z G)z@1)
3/ —->\1,0 2/ —=\0,1

k=2 i=1 =2

G)2Go) Q2@

3/ - 1\10 1/ —-\0,1

The notation — (-, -) gives the probability transitions when a given action is chosen (e.g. if action 2 is
chosen in state 1 in the process k = 2, the reward of 3 is earned and the system remains in state 1). Let

m* € C(D) always choose action 1 in states 1 and 2, #* is a B-efficient policy but not a u-efficient
policy, since policy 7° which always chooses action 2 in states 1 and 2 dominates policy 7*.

Remark A.3. A u-efficient policy is not always a B-efficient policy, as can be seen from the following
example:

26 (e
7/ —->\1,0 5/ —=1\0,1
Let * € C(D) always choose action 1 in states 1 and 2, then #* is a u-efficient policy but it is not
always B-efficient. This is because policy o, which always chooses action 2 in states 1 and 2, dominates
policy 7* whenever B = (B,, B,) and B, €(2/7,2/3).

However, in the important unichain case, i.e. when for any 7 € C(D) the Markov chain induced by =
has exactly one ergodic set plus a (perhaps empty) set of transient states (it is straightforward to show

that this property also holds for any stationary policy), there is a close relationship between the
concepts of u-efficiency and B-efficiency.

Theorem A.4. In the unichain case, m € C(S) is u-efficient if and only if m is B-efficient for any initial
distribution .

Proof. Since the Markov chain induced by 7 € C(S) has one ergodic set, the vector ()=
(¢4‘(1, m), ..., ¢*(N, m)) has identical components.
(i) Suppose that 7 is u-efficient but not B-efficient for some B, then there exists 7" € C such that

B (m°)= B () for all k,
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with strict inequality holding for some k. That is, for some x(7") € X (7°)C X, and an arbitrary fixed i,
r'x(w%) = ¢*(i, ) for all k,

with strict inequality holding for some k. Since X = L(S) (see [12, pp. 155-156]) there exists a policy
m* € C(S) such that x(7*) = x(#°), and hence for an arbitrary fixed i

rx(m*) = ¢ (i, w*) = ¢*(i, w) for all k,
with strict inequality holding for some k. This contradicts the u-efficiency of .

(ii) Suppose that 7 is B-efficient but not u-efficient, then there exists some policy 7° € C such that,
for all i and k,

¢*(i, 7°) = ", m),
with strict inequality holding for some i = e and k = k,. However, we know that ¢*(e, 7°) < rx(m?)
for any x(7°) € X(7°) (since X = L(S)D X(#°) and in computing x(m") we assume the initial state is
e). Thus, there exists a policy 7* € C(S) such that x(7*) = x(#") which satisfies

¢ (e, )= p*(e, m) for allk, -
with strict inequality holding for k = k,. Since #*, 7 € C(S) we obtain:

¢"(e, m*) = B (m*) = Bp*(m) for all k,

with strict inequality holding for k = k, for every 8 =0. This contradicts the B-efficiency of .

Appendix B

We now give an outline of the proof of Theorem 2.3. As mentioned earlier, the case where B >0 was
proved in Hordijk and Kallenberg [9]. In the case where B8 =0, the proof of part (i) can again be
established by an argument such as that used to prove Theorem 8(a) in [9]; however, the proof of part
(ii) requires the resolution of a number of technical difficulties.

Suppose then that (x°, y°) is optimal for the linear program (P) and 7" € Cup(D). Let P*(n%) =
( p’fj(wo),{fj,,l be the stationary Markov matrix induced by 7. Using an argument similar to that in
Proposition 1 of [9], and the constraints of (P), we can show that

py(m)=p%(m°)=0 for alli € Se, j&S,0, (B.1)
and
Pi(m°)=py(z")=0 foralli € SoUS,, jZS,USy. (B.2)

Next, it can be shown, as in Proposition 3 of [9], that all states of S0 are transient in the Markov chain
induced by #°. Hence, we have that

pi(m°)=0 forall jES,. (B.3)

Let 7* be an average optimal policy and let ¢, = ¢(i, 7*) for every i € E. It now follows from the
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definition of 7, the complementary slackness conditions applied to (P) and its dual, and the above that

b, = ;ezs “ pi(m’);, i€S0US,, (B.4)
and
b+ 2 (8~ p(m"Nu, =r(i,a), i€S,, (B.5)
JES o

where a, is the action selected by #° in state i. It now follows from (B.1)-(B.S5) that for every
[ES0U S

o, )= 2 r(j, a)p%(=°)

jEE
=3 [oru- 3 s pia

=¢; + 2 Ptj(""o)u;_ 2 Pfk('"'o)uk
;ES‘J, kesx(,

= ¢‘. . (B6)

Hence,

(B, )= 2 Bl m')= 2 Bl )

lEquUSyo

= 2 Bi¢i = ‘§E ﬁ.’¢i ’ (B°7)

1€ 4US o

where the second and the last equality above follow from the fact that B = {j € E | B;>0} CS0USp.
But (B.7) shows that ¢(B, #°)= ¢(B, 7) for = € C, as required.

If ° is constructed from (x°, y°) via the transformation (2.4), the B-optimality of 7° can be proved
along the same lines but with some additional technical difficulties. For details of this argument we refer
the reader to Durinovic [3, pp. 24-32].
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