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We consider a variation of t‘he hypercube model in which there are N distinguishable servers and R types of customers.
Customers that find all servers busy (blocked customers) are lost. When service times are exponentially distributed and
customers arrive according to independent Poisson streams, we show that the policy which always assigns customers to the
fastest available server minimizes the long-run average number of lost customers. Furthermore, we derive an upper bound for
the blocking probability and the long-run average number of customers lost.

first passage times * Markov decision processes * alternating renewal process

1. Introduction

Consider a queueing system in which the customers can be classified into R distinct types. Arrivals occur
in independent Poisson streams; the arrival rate for the ith customer type is A,. There are N distinguishable
servers numbered 1 through N. The amount of service provided by server i is exponentially distributed
with rate u;, independent of the type of customer being served. Exactly one server is assigned to each
customer if a server is available. No preemption is allowed. Customers arriving when the system is
saturated (all servers busy) are lost or handled by some external system. In this paper we show that the
policy which assigns all arrivals to the fastest idle server minimizes the long-run average number of lost
customers. Furthermore, we derive an upper bound for the steady state blocking probability for the system.

The above model is a variation of the hypercube model developed by Larson [6] to study problems of
resource allocation in public systems. Jarvis [3] developed an iterative procedure for finding policies that
minimize the long-run average cost for the case in which there are costs of the form o(i, n) when server i is
assigned to a customer of type n and a penalty cost s, when a customer of type n is lost. Katehakis and
Levine [5] derived computational procedures for the Jarvis model for the case of heavy and light traffic
intensities.

Derman et al. [2] considered the case of a single arrival class, with general iid interarrival times, and
showed that the policy which always assigns customers to the fastest idle server stochastically minimizes the
number of customers in the system. This approach of Derman et al. [2] can be used to establish the result of
this paper. However, we present a different proof which essentially involves establishing that the
conjectured optimal policy attains the solution to the functional equations of an equivalent Markov
decision problem. A similar approach was taken in Katehakis and Derman [4] for an optimal repair
allocation problem.

2. Notation and definitions
Since the servers are distinguishable, the state of the system can be represented by a vector x =
(xq,...,xy), where x; =1 if server i is busy and x, = 0 if server i/ is idle. Thus, the hypercube S = {0, 1} is

the set of all possible states and 1 = (1,...,1) is the state in which all servers are busy.
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Given state x € S, define
B(x)={j: x;=1}, ie., B(x)is the set of busy servers in state x,
I(x)={j: x;=0}, ie., I(x)is the set of idle servers in state x,

m(x)=min I(x),

M) = (100 Xpchn 1y X5 xy) if jel(x),
0, x)=(x1,....%,-1, 0, Xj41,..., xx) if j€B(x),
N
|x[= 2 x5, p(x)= X ps
J=1 k€ B(x)
N . R
.
=X by A=A,
k=1 i=1

K(x)={a/a=(a,,...,ag), a,€1(x)}.
K (x) denotes the set of all possible actions in state x; a, = k (i < k < N) means assign next arrival of type

i to server k.
Finally, for any action a € K(x), the total arrival rate to server j, j € I(x), is

R
A;(a) . Z Nd(a;, J),

i=1
3. Optimality equations

Standard results in Markov decision theory (Derman [1]) show that there exists an optimal deterministic
policy. Let IT denote the set of deterministic policies (i.e., policies that assign arrivals to servers as a
deterministic function of the state of the system). When a policy = € I1 is employed. it is easy to see that
the evolution of the state of the system can be described by a continuous time finite state irreducible
Markov chain {x"(r), t = 0} where x[(¢) =1 if server i is busy at time ¢ and 0 otherwise. Since customers
are lost only when the system is in state I, to minimize the long-run average number of customers lost is
equivalent to minimize the ergodic probability of the system being in state /. Let e_(x) denote the ergodic
probability of the system being in state x and 7,(x) denote the expected first passage time to state I from
state x, when a policy = is employed. Returns to state / generate an alternating renewal process. Thus
employing an alternating renewal argument it is easy to show that e_(7) is given by (1).

1 E \esd
e(D)=2(1/p+ X (1/m)7 (0. 1)| . (1)
J=1
Note that e_(7) is minimized by a policy that maximizes 7.(x). We can now formally state the following.

Lemma 1. A policy @* minimizes the long-run average number of customers lost if and only if
T(x)27,(x) VxeS-(1} Vvrell. (2)

By conditioning on the first transition out of state x, we see that for any 7 € I the 7.(x)'s can be
obtained as the unique solution to the following system of linear equations:

_—_A'Py.(x)(] +lc§x)>\,(ﬂ(.l’))1',,(ll, x) +‘e§(x)p,'r,,(0‘, x)) x#1,

7.(1)=0.

7. (x) =

(3)

320



Volume 3, Number 6 OPERATIONS RESEARCH LETTERS

In (2) 7(x) denotes the action taken by policy 7 in state x; 7(x)€ K(x). A policy 7* is optimal (i.e.,
Lemma 1 holds) iff the associated first passage times satisfy the following functional equations (Derman
(1D:

'r,,.(x)=a21‘e(x”{)\—:‘l‘(—x)(l+ Y A(a)r.(1, x)= X p,f,,.(O,.x))}‘ x#1. (4)

JE€l(x) i€B(x)
Now it is easy to see that (4) are equivalent to the following:

()= max {1+ (p-p(D) 5l + T N@n(x)+ T wn@0) )
acK(x) jel(x) i€ B(x)
where in (5) above we have asst. med without any loss in generality that A + u = 1. In the next section, we
assume that p, > p, > -+ > p,y and show that for 7* defined by: 7*(x)= (m(x),..., m(x)) (5) hold.

Proof of the optimality of 7*

For notational simplicity we drop the subscript 7* from 7,.(x).
We now state the main result.

Proposition 1. If p, > p,> -+ > p, then w* is an optimal policy.

Proof. Since A (7*(x))=0if j # m(x) to show that { 7(x), x €S, x # 1} form a solution to (5), it suffices
to show that

T(Lpirys ¥)27(1;, x) Vj€I(x) j#m(x) VxeS x+1. (6)
A condition stronger than (6) is
(1, x)=>1(1, x) Vk,l€l(x) k<l VxS x+1. (7)

We next prove (7) as follows.
Consider the following successive approximations procedure obtained from (5).

1@(x)=0 VxeS,
" *(x) = max <1+(p.—p.(x))‘r(")(x)+ L N(a)r(1, x)+ 3 (0, x)},

a€K(x) JEI(x) i€ B(x)
7" (1)=0. (9)

Then, as n — oo, 7"(x) = 7(x) Vx € S; see, for example, Derman [1, p. 54]. Thus, to prove (7), it suffices
to establish the following:

(1, x)>7"(1, x) Vk,l€l(x)) k<l x€ES. (10)

Now (10) can be established by induction as follows.
Assume that (10) hold for some n, then using this induction hypothesis we obtain

(1 1) =1+ (k= gl )7L 1) AN (L 1)+ B (0, 1, ),

i€B(1;, x)
(11)
7(n+])(llv x)=1 +(f‘ -n(1, x))"'(")(ll’ x) +AT(")(1m(l,.x)’ x) 3 E P'.'"'(")(On 1,, x).
i€B(1,, x)
(12)

It is easy to establish using (11), (12) and the induction hypothesis that ("*"(1,, x)>"*"(1,, x). The
proof is now complete since (10) hold for n=0. O
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5. An upper bound for the blocking probability
Even though it is difficult to obtain an exact expression for the steady state blocking probability e_.(1),

it is easy to obtain an upper bound e_o(1) for it; Ae_o(7) is then an upper bound for the long-run average
number of lost customers.

Proposition 2
e..(I)<e (1),
where
i i 3' i i iy ' A
eo(1)= 1+E ‘e ¥ “'“' 3 #+...+N_’M (13)
i=1 i) <iy h<iy<iy A A

Proof. Consider the suboptimal policy 7” defined as follows. Whenever the system is in state x, 7 assigns
the next arrival to any of the idle servers /(x) with equal probability, 1/]/(x)|. It is easy to see that the
corresponding to #° Markov chain {x_o(¢), £ 0) is time reversible. Thus, one can solve the detailed
balance equations (see Ross (7, p. 156]) to show that e_o(1) is as in (13). The result then follows from the
fact that #* is an optimal policy. O
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