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ABSTRACT We consider the problem of sampling se-
quentially from two or more populations in such a way as to
maximize the expected sum of outcomes in the long run.

Introduction. Consider N 2 2 populations specified by
random variables Yij, i = 1, ..., N, j = 1, 2, ...; Yij de-
notes the outcome from population i thejth time it is sampled.
Our objective is to sample sequentially from theN populations
in such a way as to maximize the expected sum of outcomes in
the long run.
We first consider the case in which the Yij are independent

normal random variables with unknown means pti and known
variances o2 At the end we indicate how these assumptions
can be relaxed.
For any policy Xf and any t 2 1, let irt, ni(t) = 7:jt 1{iiy =

i} denote, respectively, the population sampled at time t and
the total number of times population i has been sampled during
times 1, 2, ..., t. The expected sum of the first t outcomes
under the policy r is V,] (t) = E, lfiN=1 17yi(t) Y1y, a function of the
true values A = (A,u ..., UIN). The regret due to ignorance of
,u when the policy 7r is employed is R, (t) = t,u* - V (t), where

= max{,i}. Maximization of V`(t) with respect to iT is
equivalent to minimization of R,`,(t).

Let % denote the class of policies 7r for which R`(t) = o(ta)
as t -X oo for all a > 0 and all A, and let ir denote the policy
specified as follows. At times t = 1, 2, . .. , N, irt = t,_and at
any subsequent time t > N, given sample estimates Yin,(t) =
N () Y,j/ni(t) of size ni(t) for ^A, wtir+I is the i for which the

"index"

ui(t, Yin,(t)) = Yin,(t) + oi(2 log t/ni(t))1/2 [1]

is largest; for notational simplicity we have suppressed the
dependence of ui(t, Yin,(t)) on ni(t). We prove that -r E % and
is optimal in the sense of Theorem 1 below.
The ideas involved in this paper represent a considerable

simplification of the adaptive policy and the proofs employed
in Lai and Robbins (1). They have been extended in Burnetas
and Katehakis (2) to sequential allocation problems with
populations specified by densities that depend on a vector of
parameters and in Burnetas and Katehakis (3) to dynamic
programming. For related work see also Agrawal, Teneketzis,
and Anantharam (4), Yakowitz and Lowe (5), Li and Zhang
(6), and Burnetas and Katehakis (7).
The Optimality Theorem. We first prove two lemmata. Fix

6 > 0 and define the statistics

ni(t, 6) =sj 1{Tr+l = i, Ui(j,Yin,(j)) > /J* -E}

n~(t, 6) = I 1{rr%01 = i, Ui(j,Yini(J)) -< - E}.
j=N

Let I(M, t4i') = (,ui - tk4')2/2oj2 denote the Kullback-Leibler
information number for the normal densities N(gi, o) and
N(,ui', oi2)
LEMMA 1. If ,.t < ,u* then rimn tE,j0n1t(t, 6)/log t s

11/(tki, tk*) < 00

Proof: Choose 8 > 0 and write E°nI(t, E) as E>X + E>:2,
where

>1= l{Xr+1 = i, ui(j, Yini(j)) > /AA -s, and Yin,(j) ' Ai + 6}
j=N

and

>2 1{IrT+ = i, Ui(j, Yinj(j)) > A* - and Yin,(j) >/.Li + 8}

From the definition of ui(j, Yini(j)) we get sample-pathwise

I1 :- 1{7r = i, logj/ni(j) > (,u* - E - P,- 5)2/2o}
j=N

j+

' T1> = i, ni(j) < logj/I(,i, ,u* - 6 - 6)}

>N 1{j+1 = i, ni(j) < log t/I(,u, /,L* - 6 - 6)}

slog t1I(tkj, ,u* - E - 8),

where the last inequality requires the following counting
argument.

Let Xt and ct 2 0 be two sequences of constants (or random
variables), and for any fixed i let n(t) = jt=l l{XXj = i}. The
definition of n(t) implies that the following inequality holds,
pointwise in the case of random variables:

[2]t fXj+r = i, n(j) 'r ctm t act.
i=1

It follows from the above that

El° 1 -< log t/I(N, AL* - a - 6). [3]

For 22 note that the following relations hold sample-pathwise:

2
=

1{TJ+1 = i Yin(j) > Ii + 8}

tj
= 2 1{°irj+l = i,Yi(j)> i+ 8, ni(j) = k}

j=1 k=1

t t

= j=2i1Tj+ i, Yik > Ai + S, ni(j) = k}
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l1yik> WL + 6},
k=1

where the last inequality is due to the fact that >.t=k l{j+1 =
i, ni(j) = k} ' 1. It follows that

E0 ' E,,,El>k{Yik > i + }2 k=

EP,=,{Yik> yi + 61 = o>(log t) as t > oo, [4]
k=1

where the last equality is a consequence of the tail inequality
1 - ¢(x) < +(x)/x for the standard normal distribution, which
implies that PL,f{Yik > ,ui + 8} = 1 - I(kW/28/o,) s 0(kl/28/
oaj)1(k1/8/a)= (2IT)1/2e ks /2/(k1/28/oi) = O(1/k) as k
00

The proof is now easy to complete, using inequality 3 and
Eq. 4. 0
LEMMA 2. For any ,u, limrn intt0E7nO(t, 6)/log t = 0.
Proof: Recall that for j > N, policy ii always chooses the

population with largest index; i.e., if -n°+1 = i, then ui(j, Yin(j))
= maxa Ua(j, Yana( j)). Thus for j > N the event j7Tt = i, ui
(j, Yin,(j)) s- £} is a subset of {11j+l = ix Ua(j, Yana()) C

- s}, where a is any population with mean ,Ua = U*. The
latter event is obviously a subset of {ua(I, Yana(j)) A * - 6}
Using this observation and the definition of Ua(j, Yana(jl), we
obtain the following inequalities that hold sample-pathwise:

nNt, £) S E 11{Tj+ = i, Ua(j, Yan.(j)) S i-La - £}

t j

> > 1Y1Ua(;/Yak) 6 -a(l,na]/= k}
j=N k=1

t j

S l{Yak S ka- E oa(2 logjlk) 1/2}.
j=N k= 1

Hence
t j

E`nV(t, s) 1: Pj{Yia g 6 o(a(2 logj/k) 2}
j=Nk=l

s2 o(l /j) = o(log t) as t mo; [ 5]
j=N

the last inequality follows from the tail inequality and the fact
that a = gj*. Indeed, for any population a, not necessarily with
Ila = i,we have

k= PJ{Yak AIa -6 a(2 logj/k)112}

i
E D(-F&akl'2 - (2 logj)1/2)
k=1

> k(Sak'12 + (2 logj)112)/(Aak112 + (2 logj)1/2)
k=1

' c/(j(2 logj)l/2) = o(1/j) as]j .> 0,

where Ea = 6/(oa and c = c(sa) > 0. The lemma follows. O
We can now prove the optimality theorem.
THEOREM 1.
(i) 'N £ %.
(ii) For all ,u, Ro(t) = M(,t)log t + o(log t) as t -x00, where

M(,u)-S .1Z (,u* = Ai)/A(i, *).
(iii) For any fT E t,I t-R0(t)/RZ(t) c 1.
Proof: For i note that sample-pathwise, 1 c ni(t) s 2 + n1(t,

s) + nd(t, s). Thus, using Lemmata 1 and 2, we obtain that if
Ai < ,u*, then lStE,Enj(t)11og t ' 1/I(yi, ,.*) < 00.
The proof of i is now easy to complete, since for any X

N ni(t) N

R,j(t) = t,u*i - Eff E EYiy = A -Ai)E_ni(t).

ii follows from the proof of i and Theorem 1 in Lai and
Robbins (1), which implies that for all 7r in I and all ,

limt>Rf(t)/log t . - A/I(pj, (,*) as t -.
11i:A4<gu*

To prove iii we need only divide R'(t) and R,(t) by M(,u)log t
when M(,u) > 0. If M(,) = 0 then R (t) U0 for all 7r and
t, so we define 0/0 = 1. a
Remark: Note that Lemmata 1 and 2 hold for arbitrary

sequences of random variables when there exist constants i =
limkEi'Yik and index sequences

ui(t, Yin,(t)) = Yin,(t) + hi(log t/ni(t)) [61

that satisfy the following conditions:
(Al) for any 6 > 0 there exist constants Ci = CQ(pu*, ,ui, 6)

such that hi(log t/ni(t)) > ,u* - ,ui - 6 if and only if ni(t)
< log t/Ci(,u*, /J, 6),

(A2) Pi{Yik > ,ui + 8} = o(l/k) as k -- oo, VS > 0,
(A3) I=1 Pi{Yik h* -£6 -h(logj/k)} = o(l/j) asj -> 00,

VS > 0.
In this case the arguments in the proof of part i of the

optimality theorem hold if the regret is defined as R,(t) =
IN 1(tk A)Ez nj(t).
Thus, limt-°R(t)/logt s Ij:A<.,*(-A* - 11)/Ci(i-, L*, 0);

i.e., R'(t) = O(log t), and policy wO, defined analogously, is in
6. Hiowever, there is no analog of Theorem 1 in Lai and
Robbins (1). Note also that with this definition the regret
RI (t) no longer represents the quantity tp,* - EfXfjN=j1jT(t0Yijo
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