
Towards an Efficient Cluster-based E-Commerce Server

Victoria Ungureanu
Rutgers University

180 University Ave., Newark, NJ 07102,USA
email: ungurean@cs.rutgers.edu

Benjamin Melamed
Rutgers University,

94 Rockafeller Rd., Piscataway, NJ 08854, USA
email: melamed@rbs.rutgers.edu

Michael Katehakis
Rutgers University,

180 University Ave., Newark, NJ 07102, USA
email: mnk@andromeda.rutgers.edu

Abstract

Cluster-based server architectures combine good per-
formance and low cost, and are commonly used for ap-
plications that generate heavy loads. Essentially, a
cluster-based server consists of a front-end dispatcher
and several back-end servers. The dispatcher receives in-
coming requests, and then assigns them to back-end
servers, which are responsible for request process-
ing. The many benefits of cluster-based servers make them
a good choice for e-commerce applications as well. How-
ever, applying this type of architecture to e-commerce
applications is hindered by the fact that e-commerce clus-
ters have the additional task of verifying that requests
comply with contract terms. The problem is further compli-
cated by the fact that contract terms may be expressed as
functions of dynamic, mutable states.

The problem addressed in this paper is the effective as-
signment of e-commerce requests, such that the load is bal-
anced among back-end servers and request validation is ef-
ficient. To this end, we propose a policy called TDA (Type
Dependent Assignment), which takes account of the type of
contracts. Under TDA, stateless contracts are replicated on
all back-end servers. In contrast, a stateful contract, C, is
preassigned to a designated back-end server, called the base
of C, which is responsible for maintaining the state of C. The
operation of TDA may be broadly outlined as follows. A re-
quest governed by a stateless contract is assigned to the
least loaded server. In contrast, a request governed by a
stateful contract is assigned to its base, if the base is not
overloaded, and to the least loaded server, otherwise.

1. Introduction

Motivated by the need to cut costs and increase competi-
tiveness, more and more enterprises are migrating to on-line
transactions with trading partners [5]. Among the problems
inherent in this migration, none is more serious than the dif-
ficulty of controlling the activities of the disparate agents in-
volved in e-commerce.

Trading relations between enterprises are based on mutu-
ally agreed contracts. Generally, contracts enumerate agents
authorized to participate in transactions, and spell out such
things as the rights and obligations of each partner and the
terms and conditions of trades. Moreover, at any given time
an enterprise may be bound simultaneously by several con-
tracts. For example, Ford has approximately thirty thou-
sand suppliers, each operating under a different contract,
and General Motors has about forty thousand [6] (both com-
panies have announced their intention to perform their inter-
enterprise business on-line).

As an example of a contract, consider that agents in
a client enterprise (say Ford) may purchase merchandise
(tires, in this example) from a supplier enterprise (say Fire-
stone), under the following terms:

• Firestone honors purchase orders (POs) is-
sued by Ford, for up to a cumulative value,
called blanket, of 10,000 tires each month at
a prescribed price of $25/tire.

• Only agents duly certified as purchase offi-
cers by ford CA (a designated certification
authority of the client enterprise) may issue
POs; only agents duly certified as sale rep-
resentatives by firestone CA (a desig-
nated certifying authority of the supplier en-
terprise) are authorized to respond to POs.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

Back-end
server 1

Dispatcher

Back-end
server 2

Back-end
server n

. . .

Contract terms may take into account dynamic informa-
tion, referred to as state. The state, which evolves over the
lifetime of the contract, might consist of various contract
phases, the state of transactions regulated by the contract, or
past actions of various agents. A contract whose terms are
expressed in terms of state is called stateful; a contract that
consists only of immutable terms is called stateless. For ex-
ample, the contract presented above is stateful, and its state
is the value of the blanket. The validity of a PO depends
on the current value of the blanket: a PO is valid provided
the number of tires requested does not exceed the current
value of the blanket. Furthermore, the blanket value is de-
creased whenever a valid PO is issued.

The satisfactory execution of e-commerce applica-
tions depends on the performance of the correspond-
ing servers. To date, applications that generate heavy
loads, commonly use cluster-based server architectures
[3, 9, 11] that combine good performance and low cost. Es-
sentially, a cluster-based server consists of a front-end
dispatcher and several back-end servers, as depicted in Fig-
ure 1. The dispatcher receives incoming requests, and
then assigns them to back-end servers, which are respon-
sible for request processing. This type of architecture
achieves transparency and a certain degree of scalabil-
ity and fault-tolerance by decoupling request receiving
from processing.

The many benefits of cluster-based servers make them a
good choice for e-commerce applications. However, apply-
ing this type of architecture to e-commerce is hindered by
the fact that an e-commerce cluster needs to verify that re-
quests comply with the governing contracts. To emphasize
the inherent difficulties of this problem, we consider sev-
eral straightforward solutions and discuss their pitfalls.

First, consider replicating all contracts on all back-end
servers. This solution has the potential advantage of load
balancing, because a request can be assigned to the least
loaded server with the assurance that that server can verify
compliance. However, it may lead to poor performance, be-
cause contract states have to be maintained consistent. Un-
fortunately, achieving consistency through traditional algo-
rithms, such as two-phase commit, would strain back-end
servers: every change of the state of every contract would
have to be committed by all back-end servers, even though

they might never serve a request regulated by some of the
contracts.

Secondly, assume that requests governed by a given con-
tract are assigned only to a pre-specified back-end server.
Because a contract is served by only one back-end server,
this solution does not require maintaining the consistency
of contract states. However, it might lead to load imbalance.
Finally, we mention that delegating request validation to the
dispatcher (or some other central entity, for that matter) de-
feats the purpose of using a distributed architecture in the
first place.

In order to implement cluster-based architectures
in e-commerce setting, we propose a policy that com-
bine good load balancing with efficient validation of
requests. The proposed policy, called TDA (Type De-
pendent Assignment), takes account of contract types.
Under TDA the contract rules (immutable part) are repli-
cated on all back-end servers. In contrast, the state of
any stateful contract C, is preassigned to only one desig-
nated back-end server, called the base of C.

The broad outline of TDA can be described as follows.
For every incoming request, the dispatcher determines the
type of contract governing it (stateless or stateful). If the
contract is stateless, the dispatcher assigns the request to the
least loaded server (determined according to a prescribed
load metric). However, if the contract is stateful, the dis-
patcher assigns the request to the base of C, whenever the
base is not overloaded. Note, that since the base maintains
the state of C, no extra communications are needed in this
case. In contrast, if the base is heavily loaded, the dispatcher
reassigns the base to the least loaded server. We point out
that only in this case, the state is sent to the new base and
communication overhead is incurred. To support TDA im-
plementation, we assume that contract formulation explic-
itly states contract type, and distinguishes between mutable
and immutable parts of a contract.

The rest of the paper is organized as follows. Section 2
describes the contract enforcement mechanism. Section 3
describes in detail the TDA policy, and Section 4 concludes
the paper.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

2. Contract Enforcement

There has been a growing interest in supporting
e-commerce contracts, and a variety of different, and
quite powerful, enforcement mechanisms have been de-
vised (see, for example, [1, 2, 4, 7, 8, 12]. However, to
the best of our knowledge, none of the frameworks pro-
posed so far considered applying cluster-based architec-
tures to e-commerce applications, nor to any applications
governed by stateful policies.

In order to apply cluster-based architectures to e-
commerce applications we assume enforcement is car-
ried out by generic contract-engines. Contract engines
are generic tools that can verify certificates, and in-
terpret and carry out the set of rules formalizing con-
tract terms. In the assumed enforcement mechanism each
back-end server has an associated contract-engine which
maintains the immutable part (type and rules) of all con-
tracts, regardless of their type. Moreover, a contract-engine
maintains the state of those contracts for which it serves as
base (the assignment of contracts to their base will be de-
scribed in the next section).

Given these assumptions enforcement is carried out as
follows. Consider that the dispatcher receives a request R,
and assigns it to a back-end server S, having an associated
contract-engine CE. Then the following steps will be taken:

1. CE determines the contract C governing request R. For
example, the URL may serve as reference to the con-
tract id.

2. If the request is accompanied by certificates then, CE
verifies each certificate presented by the requester.

3. CE checks whether R is authorized by C. If this is the
case, R will be processed by back-end server S; other-
wise, the request is discarded.

We point out that to insure that the state of a contract C
is maintained consistent, requests regulated by C should be
handled sequentially in chronological order of their occur-
rence.

3. The TDA Policy

The TDA policy makes the following assumptions and
stipulations. First, TDA stipulates that the initial choice of
bases by the dispatcher is made in Round-Robin manner.
Second, TDA assumes that at any given time, the dispatcher
knows the number of requests pending completion at each
back-end server. These values are estimated by the num-
ber of active server connections and are used as a measure
of server loads. This is a practical assumption, because the
dispatcher is responsible for handling connections and pass-
ing incoming data from clients to back-end servers. Conse-
quently, the dispatcher must keep track of open and closed

connections at each server (cf., for e.g., [11, 13]). Finally,
TDA assumes that the dispatcher has a parameter, AC, de-
fined as the maximum number of requests (expressed as
the number of active connections) that a server may pro-
cess concurrently (to avoid excessive delays).

Subject to the assumptions and stipulations above, TDA
operates on a request R governed by a contract C as follows:

1. When R arrives at the dispatcher, the dis-
patcher determines the type of C.

2. If C is stateless, the dispatcher assigns R to
the least loaded the server, where the load
of a server is given by its number of active
connections.

3. If C is stateful, the dispatcher determines the
base S of C. If the number of active connec-
tions of S is smaller than AC, then the re-
quest is assigned S.

4. However, if the number of active connec-
tions of S exceeds AC, the dispatcher deter-
mines the least loaded back-end server, say
S’. If S’ is less loaded than S, then the dis-
patcher marks S’ as the base of C and as-
signs the request to it. The dispatcher fur-
ther notifies S of the change. After S finishes
processing all requests in its queue that are
governed by C, it sends the state of C to S’.

We point out that base reassignment is motivated by the
fact that the initial assignment is made in Round-Robin
manner, which is only a crude means for load balancing.
Even though all back-end servers act as bases for the same
number of contracts, some of them may get an unusually
high number of “active” contracts, which govern a large
fraction of the requests received in a certain time interval,
and consequently their performance may degrade.

Changing bases incurs communication overhead, be-
cause the new assignment needs to be communicated to the
old and new bases, and the state needs to be transferred to
the new base. To balance the benefit of base change with
its cost, the dispatcher does not change the base every time
there is a server which is less loaded than the base. Rather, a
base reassignment is carried out only when: (a) the number
of active connections of the current base exceeds the pre-
scribed threshold, AC, and (b) there is a server which is sub-
stantially less loaded than the current base.

Discussion We mention that in devising TDA we have been
heavily influenced by the LARD (Locality-Aware Request
Distribution) policy [10]. The goal of LARD is to assign
HTTP requests so that access to disk — an expensive op-
eration — is kept low. To this end, the dispatcher maintains
for each document a set of back-end servers that have the
document cached with high probability, and assigns a re-
quest for a document to the least loaded server from this

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

set. There are, however, several important differences be-
tween LARD and TDA, and these stem from the type of the
underlying applications:

• LARD treats all requests similarly in the sense that it as-
signs a request for a document to the least loaded base
in the set. In contrast, TDA treats requests governed by
stateless and stateful contracts differently.

• Under LARD a document can have several bases,
whereas under TDA a stateful contract has to have
a unique base; moreover, under LARD each docu-
ment has a base, whereas under TDA only stateful
contracts need to have a base.

We conclude this discussion by pointing out that TDA
is more amenable to practical implementation than LARD.
This is so, because a Web cluster may serve a very large
number of distinct documents, and consequently the table
storing the mapping between documents and bases can grow
quite large. It follows that maintaining and consulting this
table can be expensive operations. In contrast, contracts are
substantially less numerous than documents, and thus, the
corresponding mapping table is much smaller. Therefor, we
expect that mapping contracts to bases is not onerous.

4. Conclusion

In this paper we propose an assignment policy for e-
commerce clusters, called TDA, which takes into consider-
ation request validation. However, this policy is probably
not efficacious for every workload pattern. For example, if
the workload is light, there is a high probability that when-
ever a request arrives there is an idle server on which it can
be served without delay. In this case, traditional policies,
like LC or Round-Robin, may perform comparably to TDA
or even better. A real challenge is to find a way to continu-
ally adapt the dispatcher policy to changing workload pat-
terns.

References

[1] S. Abiteboul, V. Vianu, B. Forham, and Y. Yesha. Relational
transducers for electronic commerce. In Symposium on Prin-
ciples of Database Systems, pages 179–187, June 1998.

[2] A. Abrahams, , and J. Bacon. Representing and enforcing
e-commerce contracts using occurrences. In Proc. of the 4th
International Conference on Electronic Commerce Research
(ICECR4), pages 59 – 82, Dallas, Texas, USA, November
2001.

[3] V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load bal-
ancing on web-server systems. IEEE Internet Computing,
3(3):28–39, 1999.

[4] A. Dan, D. Dias, R. Kearny, T. Lau, T. N. Nguyen, F. N. Parr,
M. W. Sachs, and H. H. Shaickh. Business-to-business in-

tegration with tpaML asnd a business-to-business protocol
framework. IBM Systems Journal, 40(1):68–90, 2001.

[5] Economist. E-commerce (a survey). pages 6–54. (The
February 26th 2000 issue).

[6] Economist. Riding the storm. pages 63–64. (November 6th
1999 issue).

[7] B. N. Grosof, Y. Labrou, and H. Y. Chan. A declarative ap-
proach to business rules in contracts: Courteous logic pro-
grams in XML. In Proceedings of the first ACM Conference
on Electronic Commerce (EC99), November 1999.

[8] S. Ketchpel and H. Garcia-Molina. Making trust explicit in
distributed commerce transactions. In Proceedings of the In-
ternational Conference on Distributed Computing Systems,
pages 270–281, 1996.

[9] R. Lavi and A. Barak. The home model and competi-
tive algorithms for load balancing in a computing cluster.
In The 21st Intl. Conf. on Distributed Computing Systems
(ICDCS’01), Apr. 2001.

[10] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-aware request dis-
tribution in cluster-based network servers. In Proceedings of
the Eighth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS-VIII), 1998.

[11] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient
and portable web server. In Proceedings of the USENIX 1999
Annual Technical Conference, 1999.

[12] M. Roscheisen and T. Winograd. A communication agree-
ment framework for access/action control. In Proceedings of
the IEEE Symposium on Security and Privacy, Oakland, Cal-
ifornia, May 1996.

[13] T. Y.M. and R. Ayani. Comparison of load balancing strate-
gies on cluster-based web servers. Simulation, The Journal of
the Society for Modeling and Simulation International, 77(5-
6):185–195, November-December 2001.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

