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STOCHASTIC ANALYSIS AND APPLICATIONS, 16(5), 81 1-824 (1998) 

DYNAMIC ALLOCATION 

POLICIES FOR THE FINITE HORIZON 

ONE ARMED BANDIT PROBLEM 

A P O S T O L O S  N. B U R N E T A S  
Case Western Reserve University 

M I C H A E L  N. K A T E H A K I S  
Rutgers University 

ABSTRACT 

The unknown performance of a new experiment is to be evaluated and 
compared with that of an existing one over a finite horizon. The explicit 
structure of an optimal sequential allocation policy is obtained under pertinent 
reward/loss functions, when the experiments are characterized by random 
variables with distributions from the one parameter exponentzal famzly. 

1. I N T R O D U C T I O N  . We consider the following version of a classical problem of 

dynamic allocation of effort among different activities in the presence of part,ial 

information about the underlying statistical characteristics, (c.f. [I], 1121). There are two 

experiments d e n o t d  by Ej (3=1,2) . Associated with experiment E3 are i.i.d. random 

variables representing the outcomes (rewards) of the experiment each time it is used. These 

random variables model, for example, the responses of medical treatments, industrial 

processes, investment decisions, or even the outcomes of a slot machine (the "bandit"). The 

adaptive control problem is to sequentially select the experiment to  be used each period, so 

as to maximize the expected value of the total reward obtained during a finite horizon of 

length N. Furthermore we assume that the characteristics of experiment El are known 

in advance, while those of E, are not, that  is experiment El corresponds to a process 

presently in use, while E2 corresponds to a new process that is to be evaluated. In  this 
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812 BURNETAS AND KATEHAKIS 

paper we study the case in which the outconles from E, (s=1,2) are random variables 

from the one parameter ezponenttal famdy of distributions. In sections 2 and 3 we 

postulate a prior distribution on the unknown parameter of the second experiment, and 

formulate the problem of maximizing the expected sum of outcomes over a finite horizon. 

We point out that  this is equivalent to minimizing a suitably defined regret (expected loss 

function). The main contribution of this paper is the characterization of the structure and 

properties of optimal dynamic ailocation policies given in Theorem 4.1. 

The work on the finite horizon problem generalizes results of 131 on the binomial case. For 

related work see 141. For the infinite horizon discounted reward version of this problem, 

see PI ,  171, 181, PI ,  P O I ,  1111, 1131, 1141. 

2. P R O B L E M  F O R M U L A T I O N .  Let El , E2 be two statistical experiments. With 

each E, , 2=1,2 , there are associated i) a scalar parameter 8;  belonging to  some set Q 

and ii) a sequence of random variables X ,  , Yil , Yt2 , . . ., such that  Y,, represents the 

outcome of experiment Ei the jth time it is performed, while X ,  is a generic random 

variable used to denote an outcome from Ei . Given the value of O i  =B , the random 

variables X i  , Yi l  , Yi2 , . . . are i.i.d., with a probability density function (p.d.f.) f ( z  16') 

wit,h respect to a non degenerate measure v . Let 4 8 )  and u2(0)  denote the expected 

value and variance respectively, of a random variable X distributed according to At I 9 )  , 
i.e. p(8)  = E(X I 8 )  , u 2 ( 0 )  = Var(X I 8 )  . 

We make the following assumptions. 

Assumption 1. The p.d.f f(r I 8 )  belongs to the exponential family with a single natural 

parameter 8 , i.e., 

Assumption 2. The parameter set is an interval of the form 0 = ( 8 , 8 )  , with endpoints 

that can be infinite, and satisfies the following conditions 

C, = inf $"(0) > 0 , C2 = sup 11"(8) < a . 
B E @  8 E O 

Assumption 3. Parameter O1 is known in advance, while 8 ,  is unknown. Following the 

Bayesian approach, we consider 8 ,  as a random variable with prior distribution denoted 

by H,(8), 0 E O . 
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FINITE HORIZON 813 

Remark 2.1. a) It is known (cf. [ 5 ] )  that, for the oneeparameter exponential family, 

p(O)=$'(B) and u"(B=$"(B) , thus p(9) is strictly increasing in 0 and the set ( ~ ( 8 )  : 

0 E 19) is an interval of the form (&I), p(8)) . 

b) Note that  if B1 < 8 (R1 2 3) then the problem is trivial, because then one should 

always choose E, ( E l )  . From now on, we shall assume that  8 < B l  < 8 . 

We define the optimization problem as follows. Let 2 (n=N-t) denote the number of 

samples that  have already been taken (remain to be taken). 

At 1=0 we have X1 - A x  1 B1) and X2 - A x  1 B,) with respect to v(dx) , Q1 known 

and O 2  - H,(B) . 

An observed sample of size k, from experiment E, will be denoted by d,(k,)=(y,, , . . . , 

Y;,A, 9 2=1"2. Let h = (klrkg) , d(h) = ( dl(kl), d2(k2)) . 

Since O1 is known, the future observations from El , X 1  , Yl,kl+l r Y1,kl+e r . . .  1 given 

dl(kl) , are i.i.d. random variables with p.d.f. K x  I B1) , wit,h respect to v(dz) . Since 

8, is unknown, the future observations from E, , X, , Y,,k2+l , , ... given 

{ d,(k,) and B2=B ) , are i.i.d. random variables with p.d.f. f(x / 8) , with respect to 

v(dx) . Given only d,(k2) , !I2 is a random variable with (posterior) distribution 

H(B I d,(k2) ) , defined as follows 

where d,(k;)=( d,(k,-I), Y , , ~ ~ )  H(6' / d2(0)) = H,(O)  , and f(d,(k,) 1 6) (respectively 

f(d,(k,) 1 H,)) denotes the joint p.d.f. of the sample d,(k,) , given B,=B (respectively 

given the prior H,) . 

Given d,(k2) , unconditional on the value of 8, ,  the future observations from E, , X, , 
Y2,keil , Y,,k2+,, ... , are i.i.d. random variables with distribution determined by the 

marginal p.d.f (with respect to v(dx) ) 
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8 14 BURNETAS AND KATEHAKIS 

For notational convenience we use the same symbol f to denote the p.d.f. of an outcome 

given a specific parameter value, as well as  the marginal p.d.f. of an outcome from E2 

given the history of observations d,(k2)  . Although they are different quantities, there is 

no danger of confusion. 

The Bayes estimate of ~ ( 0 , )  given the sample d,(k,)  is equal to 

For the one-parameter exponential family case it is well known that the posterior 

distribution H ( 0  I d 2 ( k 2 ) )  and the marginal density A x  I d2(k2)  ) defined in ( 2 . 5 )  and 

( 2 . 6 )  respectively are uniquely determined by (k, , ' j i2 , t  ) , where 

is the sample mean; i.e., the pair (k,'jik) is a sufficient statistic for the unknown 

parameter. 

Thus, we can assume that in relations ( 2 . 5 )  , ( 2 . 6 )  and ( 2 . 7 )  d2(k2)  is simply the two 

dimensional vector d 2 ( k 2 )  = ( k 2 , T a j k a )  . Note that given d,(k2-l)=(k-l , y )  and 

Y f j k 2 =  , d,(k,)  is defined by t,he following updating scheme 

where 

An h'-stage sequential allocation policy is defined as a rule T = ( T ( ~ ) , T ( ~ ) ,  ..., X ( N - I ) )  , 
where 

is equal to 1 or 2 , according to whether at  stage t r dictates to take a sample from 

E l  or E ,  respectively, where 
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FINITE HORIZON 

The performance of a policy x is measured by 

and the expected values 

A policy K* is optimal for the problem of horizon N and initial prior H,(O) on 0 ,  , if 

and only if 

M ( N ,  H , , K * )  = max M ( N , H , , n )  , ( 2 . 1 4 )  

where the maximum is taken over all sequential policies defined in ( 2 . 1 1 )  . 

An alternative way to describe the problem is in terms of "costs", i.e. suitably defined 

regrets rather than "rewards", or outcomes. We introduce a loss function L ( 0 , t )  which 

represents the one step loss incurred when the unknown parameter is equal to 8  and a 

sample from experiment E, is taken. 

where p'(0) = max { p ( Q 1 ) ,  ~ ( 0 ) )  . Then the Bayes risk during the first 1 observations is 

Since the quantity tEH [ p * ( 8 ) ]  in ( 2 . 1 9 )  is independent of T , maximization of M is 
0 

equivalent to minimization of R . This leads us to the alternative definition of an 

optimal policy K *  : 

3. OPTIMALITY E Q U A T I O N S  -- P R E L I M I N A R Y  R E S U L T S .  The main result of 

this secton is the derivation of a set of Dynamic Programming (D.P.) equations in a form 

suitable for the study of the problem. This task is accomplished in two steps. 

First we obtain the standard D.P. optimality equations for the optimization problem 

defined in section 2  in terms of maximization of the expected sum of outcomes, as well as 
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816 BURNETAS AND KATEHAKIS 

of minimization of the Bayes risk and reduce them into those of a stopping problem. This 

stopping problem reduction is intuitive, because if an optimal policy ever switches from EZ 

to  El (and is known), it means that a t  the switching time point ~ ( 0 ~ )  appears to 

be sufficiently larger than ~ ( 0 , )  , given the up to 1 information about O t  and the 

number of the remaining to be taken samples, and also no additional information will be 

gained about the unknown parameter by sampling from E l  . 

Second, using an appropriate change of measure transformation, we bring the D.P. 

equations to the desired form, used in the subsequent sections for the proofs of the 

structural and asymptotic results. 

In the sequel it is more convenient to discuss the problem in terms of n  , the number of 

samples remaining to be taken until the end of the horizon N . 

We start by defining two sets of optimization problems. 

Let P ( n , k , y )  be the problem of maximizing the expected sum of observations over a 

horizon n  , when the initial information about 0 ,  is summarized by H(0 1 ( k , y ) )  , i.e., 

the posterior distribution of 0, given d2(k2)=(k ,y )  . Also let Q ( n , k , y )  be the problem 

of minimizing R ( n , H , r )  , with the same conventions. 

For problems P ( n ,  k,  y )  and Q ( n , k ,  y) define the optimal value functions 

respectively. 

Using standard arguments of Markovian Decision Processes with general state and finite 

action spaces (cf. [6]) we obtain 

Proposition 3.1. a)  Functions V ( n , k , y )  are the unique solutions of equations ( 3 . 3 )  , 
( 3 . 4 )  below. 
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FINITE HORIZON 817 

b) Functions U(n,k,y) are the unique solutions of equations (3.5) , (3.6) below. 

The one step expected reward and cost functions ~(k,~;cr=z) and ~(k,~;cr=z) , 2=1,2 , 
are defined as follows. 

Moreover, the supremum and infimum in (3.1) and (3.2) are attained by T *  , and they 

can be replaced by maximum and minimum respectively. 

In the next proposition it is stated that (3.3) and (3.5) are equivalent to the optimality 

equations of appropriately defined stopping problems, where "stopping" means switching 

to the known experiment for the remaining trials. The proof is an extension of that  given 

in [3] for the case of binomial populations. It is ommitted hcrc for briefnrss. 

Proposition 3.2. a) Eqs. (3.3) are equivalent to the following D
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BURNETAS AND KATEHAKIS 

b) Eqs. (3 .5)  are equivalent to the following 

Definitions 3.1 below allow us to use a change of measure transformation in order to 

obtain the final form of the optimality equations. 

Definitions 3.1. Let 

Remark 3.1. From (2.2) it is easy to see that 

4Q,Q, I Y) = 4 0 )  Y - ~ ( 0 )  , 

In the next proposition we obtain a set of optimality equations which are equivalent to 

(3 .11) ,  (3.12) . The proof is given in the Appendix together with a necessary auxilliary 

lemma. 

Proposition 3.3. a)  Eqs. (3.11) are equivalent to the following set of equations. 

u(%k,y) = max(0 ,  d k l y ) +  E d ,  1 el)v(n-I,k+l,m(k,~,X2))} , (3.20) 

n=1,2,. . . ,Ar ,  k=O,l,. ..,N-n , y E R , 

where 
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FINITE HORIZON 

4. S T R U C T U R E  OF OPTIMAL POLICIES. In this section we prove two theorems 

that describe the structure of the optimal policy for the finite horizon problem formulated 

in sections 2 and 3 . Theorem 4.1 describes the optimal policy with respect to  stopping 
k 

and continuation intervals for y = 1 y2,3 , while Theorem 4.2 gives an alternative 
k ] = I  

intuitive characterization in terms of inflation factors added to the Bayes estimate of 

~ ( 0 , ~ )  . First we prove the following 

Lemma 4.1. The quantity q(k,y) , defined in (3.23) , is increasing in y . 

Proof. From (3.18), 1(0,8,  / y) is decreasing in y for 9 < 0, , and increasing in y for 

8 > O1 . Also from (3.16), 6 ( 8 )  < 0 ( > 0) for 8 < ( 9  > 8,) . Thus 6(8)ek ' ( e ' e1  I y )  
is increasing in y for every 8 E O , 8 # 9 ,  , and is equal to zero for 9=01 . The 

lemma follows from this and the definition of q ( k , y )  . 

We can now prove the following main result. 

Theorem 4.1. a )  For each n , k there exists a number y , ( k )  with the property 
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820 BURNETAS AND KATEHAKIS 

where xc (n ,k , y )  is the action indicated by the optimal policy in state ( n , k , y )  . 

b) The sequence y,(k) is nonincreasing in n  . 

Proof. a) Define 

We shall prove simultaneously by induction on n  that 

i) relation ( 4 . 1 ) ,  holds, 

ii) T(n ,k , y )  is increasing in y  , for all (n ,k )  . (4.31, 

For n=l , (4 .3 )1  is immediate from Lemma 4.1 . Let 

where we define inf 0 = +a . 

For y  < y l (k )  T ( l , k , y )  is negative , while for y  L y l (k )  it is nonnegative. This 

completes the proof of (4 .1 )1  . Now suppose that ( 4 . 1 ) ,  and (4 .3 ) ,  hold. For n+l  we 

have 

But the relation m(k ,y , z )  2 y , (k+l)  is from (2 .10 )  equivalent to 

hence 

In order to prove (4.3),+1 , we have from (4 .3 ) ,  that T(n ,k+ l ,m(k , y , z ) )  is increasing 

in m , while m(k ,y ,x )  is increasing in y  , and so T ( n , k + l , m ( k , y , z ) )  is also increasing 

in y  . Also T(n ,k+ l ,m(k , y , z ) )  2 0 for z  2 z , (k ,y)  . 
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FINITE HORIZON 82 1 

Furthermore z,(k,y) is decreasing in y  , so when y  increases the range of integration 

also increases. (4 .3 )n+1  follows from the above. Relation (4 .1 )n+1  can be established 

using (4 .3 )n+1  and defining y n j l ( k )  in the same way as in (4.4) , and this completes 

the proof of (a) . 

b) The proof is an immediate consequence of part (a)  and Proposition 3.2 . If y  2 yn(k) ,  

then a * ( n , k , y ) = 2  , a * ( n + l , k , y ) = Z ,  thus y  2 ~ , + ~ ( k )  . Therefore, y  >_ y n ( k )  implies 

y  >_ y n j 1 ( k )  , which is equivalent to  

Remark 4.1. It is clear that yn(k)  is related to the uncertainty due to the ignorance of 

parameter 8, , and represents in some way the amount of immediate reward which we 

can afford sacrificing in order to obtain information about B 2 ,  which is valuable for 

future decisions. Therefore, the monotonicity of y n ( k )  in n  is intuitive, since further 

sampling from E, reduces the uncertainty. 

Theorem 4.2 below provides an alternative characterization of the structure of the optimal 

policy. 

Theorem 4.2. a) For each n  , k  , y  there exists c ( n , k , y )  with the property 

where ~ * ( n , k , y )  is the action indicated by the optimal policy in state ( n , k , y )  , and 

b) Quantity f ( n , k , y )  is positive and increasing in n  for all k , y .  

Proof. a )  By Theorem 4.1.b y , (k )  5 ~ ~ ( k )  . We also have from Theorem 4.1 and 

Lemma 4.1 that if n * ( n , k , y )  = 1 , then y  < y,(k)  , and so q ( k , y )  < q ( k , y , ( k ) )  . But 
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822 BURNETAS AND KATEHAKIS 

where E 
H ( .  I ( k , ~ ) )  

[ p ( B 2 ) ]  denotes the conditional expectation of the reward from E d ,  

given the information about the previous outcomes. 

We thus have 

and this completes the proof of (a). 

b) Since y,(k)  5 ~ ~ ( k )  , it is true that ~ ( k , y , ( k ) )  < 0 ,  thus c ( n , k , y )  > 0 .  By ( 4 . 1 2 ) ,  

the dependence of t ( n , k , y )  on n  is due to q ( k , y , ( k ) )  . Also by Lemma 4 . 1  q ( k , y , ( k ) )  

is increasing in y , (k )  . Finally, since y,(k)  is nonincreasing in n  , ~ ( n , k , y )  is 

increasing in n  . 

Remark 4.1. An interpretation of the quantities ~ ( n , k , y )  is that they represent a positive 

inflation, that we add to the current estimate of the reward of E d ,  /it = 

EH( . I ( k ,  y)) [ p ( B , ) ]  , in order to take into account the uncertainty associated with it. So 

the properties of c ( n , k , y )  stated in part (b) are intuitively expected. 

A P P E N D I X  

Lemma A.1. For every function g ( k , y )  such that E A .  I ( t , y ) ) (  I !dkjX2) I ) <oo we 

have that  

Proof. From (2.6) ( 3 . 1 4 )  and ( 3 . 1 9 )  

Thus, D
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FINITE HORIZON 

Proof of Proposition 3.3, a) Define 

W(n,k ,y )  = V ( n , k , ~ ) -  n 4 0 J )  . 

Subtracting np(O1) from both sides of (3 .11)  , we obtain 

Using 3.8, and Definitions 3.1 

Hence 

From Lemma A.1 

T o  complete the proof we only need to multiply both sides of (A.8)  by A(k,y)  

A ( ~ , Y )  > 0 )  . 

(A.21) 

(where 

The proof of (b) is similar, with the only difference being that  we need not perform the 

first subtractions. 
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