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ABSTRACT
The multi-armed bandit probem is often taken as a basic model for the trade-
off between the exploration  utilization required for efficient optimization -
under uncertainty. In this paper we study the situation in which the unknown
performance of a new bandit  is to be evaluated and compared with that of a
known one over a finite horizon. We assume that the bandits represent
random variables with distributions from the one parameter exponential
family. When the objective is to maximize the Bayes expected sum of
outcomes over a finite horizon, it is shown that optimal policies tend to
simple limits when the length of the horizon is large.

1. INTRODUCTION.  The multi-armed bandit probem is a basic model for the tradeoffs
between the exploration - utilization required for efficient optimization under uncertainty. In 
this paper we study the situation in which the unknown performance of a new bandit  is to be
evaluated and compared with that of a known one over a finite horizon.   There are two
experiments denoted by    1   Associated with experiment    are i.i.d. randomE j ,2  . Ej j� � �
variables which represent the outcomes of the experiment each time it is used. These random
variables model, for example, the responses of medical treatments, industrial processes,
investment decisions, or even the outcomes of a slot machine the “bandit" . Associated with� �
each outcome is a reward.  We are allowed to use either experiment for    times finiteN �
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horizon . We wish to maximize the expected value of the sum of the rewards achieved during�
this finite horizon. Furthermore we assume that the characteristics of experiment    areE1

known in advance, while those of     are not, i.e., experiment    corresponds to a processE E2 1

presently in use, while    corresponds to a new process that is to be evaluated.  In this paperE2

we study the case in which the outcomes from    i 1,2   are random variables from the E = onei � �
parameter exponential family of distributions. In section  2 we postulate a prior on the
unknown parameter of the second experiment, and formulate the problem of maximizing the
expected sum of outcomes. We point out that this is equivalent to minimizing a suitably defined
regret expected loss function . In section 3 we summarize a set of results on the the existance� �
of an optimal policy of simple form finite horizon case, obtained in Burnetas and Katehakis
(1997a). The main contribution of this paper is to extend the finite horizon results and derive a
simple explicit approximation to the optimal policy in the case that the planning horizon is
large. This is done in section 4.  Section 5 extends the asymptotic approximations to a
generalized form of the regret function.

The results of section 4 are related to Lai and Robbins 1985  and Lai 1987  who obtained� � � �
asymptotic solutions for the more general problem in which one has to choose among    k
unknown experiments. Our proofs are along different lines, and are based on classical Dynamic
Programming arguments, as Bradt, Johnson, and Karlin 1956  did for the binomial case. The� �
results of section 5 are new.

Chernoff and Ray (1965) and Chernoff (1967), obtained asymptotic testing plans for the case of
binomial populations using diffusion processes approximations. The approximation technique
we use to obtain the asymptotic results is related to that of Schwarz 1962, who derived
asymptotic expressions for the hypothesis testing problem, for the case where there is an
indifference region separating the two hypotheses. We use a modification of Schwarz's
argument to obtain upper and lower bounds for the optimal stopping sets, and then derive
asymptotic expressions on these bounds using Laplace's method for the asymptotic expansions
of integrals.

The approximation technique we use to obtain the asymptotic results is related to that of
Schwarz 1962 , who derived asymptotic expressions for the hypothesis testing problem, for� �
the case where there is an indifference region separating the two hypotheses. We use a
modification of Schwarz's argument to obtain upper and lower bounds for the optimal stopping
sets, and then derive asymptotic expressions on these bounds using Laplace's method for the
asymptotic expansions of integrals.

A recent and rather exhaustive survey of the general area is given in Lai (2001); additional
recent work in this area is contained in Burnetas and Katehakis 1993 , (1996), 1997a  and� � � �
� � � �1997b , Katehakis and Robbins 1995 , and Shimkin and Shwartz (1995), (1995b), . For other
related work on the infinite horizon discounted reward version of this problem see Gittins
� � � � � �1979 , Varayia Walrand and Buyukkoc 1985 , Katehakis and Derman 1987 , Katehakis and
Veinott 1987 , Berry and Fristedt 1985 , Agrawal Hedge and Teneketzis 1988 , and� � � � � �
Glazebrook and Mitchell (2002).

2. THE MODEL.  Let   ,    be two statistical experiments. With each   , i 1,2 ,  thereE E E1 2 i �
are associated: i   a scalar parameter  belonging to some set   , and  ii  a sequence of� �� �i  
random variables  , , ,     such that  represents the outcome of experiment    X  Y   Y  Y   Ei i i ij i1 2 �
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the  j  time it is performed, while is a generic random variable used to denote an outcometh X   i

from   . Given the value of  ,  the random variables  X , , ,   are i.i.d., withE     Y   Y  i i i i i� � � 1 2 �
a probability density function p.d.f.   with respect to a non degenerate measure  � � f x     .  � � �� �

Let     and   denote the expected value and variance respectively, of a random� � �� � 2� ��
variable  distributed according to  i.e.    ,  VarX  f x  ,  X X  .� � � � � � � � � � �� � � �� � �� � � �E 2

We make the following assumptions.

Assumptions .  1.  The p.d.f    belongs to the one–parameter exponential family with af x� � ��

single natural parameter   ,  i.e.,�

 f x   e    .�� � �� � � �x + x� � � � �s � �2.1  

2. The parameter space is an interval of the form  ,  ,  with endpoints that can be–
–

� � �� � �
infinite, and satisfies the following  conditions

   inf   ,   sup   2.2� � �
� �

� � � � � �1 2    0          .
� � � �

�� ��� � � � � � � 	

3.  Parameter  is known in advance, while    is unknown, and following the Bayesian� �1  2

approach,  is a random variable with prior distribution:  ,   .� � �2  H  o� �� �

4. We assume that:  where  ,   are such that  ,  =    . – – –
–

� � � � � � � � � � �� � � � � �� 
 � � � � �1 � � �
– –

 , 

Remark  2.1.    a)   We use the natural parameter representation of the exponential family, c.f.,
Cox and Hinkley 1974 , page 28. It is known  that for the one–parameter exponential family    � �
� � � � � � � � � � �� � � � � � � 
 � � � ��   and     is strictly increasing in    and the set     2� � � � �� � ��� ,
� � � � �� � � � � ��  is an interval of the form  ,  .  –

–

b) Note that if   then the problem is trivial, because then one should always �1 1
 � � �� � �–    
–

choose     .  E E2 1� �

Let   denote the number of samples that have already been taken remain to bet  n N t   � �� � �
taken . At  0  we have  with respect to  ,  with� �t X  f x    dx  X  f x   � � � � � � � � � �1 1 2� �� 2

respect to  ,  known ,  � � ��dx     H  .� � � �1 2 o �

An observed sample of size    from experiment    will be denoted by  , ,k E d k y  y ,   i i i i i i,k� � � � �1 � i

i k  k k    d k   d k d k  .� � � � � � � � � � � � �1,2.  Let  , , ,1 2 1 1 2 2

Since  is known, the future observations from  ,  , , ,  given  , are�1 ,k + ,k +2  E  Y   Y     d k1 1 1 1 1 11 1 � � �
i.i.d. random variables with p.d.f.  ,   with respect to  Since  is unknown,f x  dx  .    � � � � ��1 2� �

the future observations from  ,   , Y ,   given   and  ,  areE Y   d k  2 2 1 2 2 2,k + ,k +2 22 2 � 
 � � � �� �

i.i.d. random variables with p.d.f.  ,   with respect to  Given only  ,    f x  dx  .   d k  � � � � � � �� � �2 22

is a random variable with posterior  distribution  ,  defined as follows� � H d k  � � � � �� 2 2

 2.3� � �dH d k     ,� � � ��� 2 2
� � � � � � � �

� � � � � �

� � � � � � � ��

� � � � � � � ��

�

�
d k   dH

d k H

f y  dH d k

f y  dH d k
2 2 o

2 2 o

2,k 2 22

2,k 2 22

� � � �

� �
�

1

1�
�
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where  1 and  d k d k , y   ,  H d 0   H  ,  d k   i i i i i,k 2 o 2 2� � � � � � � � � � � �� � � � � � � � � �i � � �
�

� ��respectively      denotes the joint p.d.f. of the sample  given � � � � � � � �
�

d k H d k  ,    2 2 o 2 2 2� �

� �respectively given the prior  H  .o

Given  ,  unconditional on the value of  ,  the future observations from  , d k  E  Y  , 2 2 2 1� � �2 2,k +2

Y2 2,k +2  ,  ,  are i.i.d. random variables with distribution determined by the marginal p.d.f  �
�with respect to  �� � �dx  

 f x d k   f x dH d k  .� � � � � � � ��� � � � �2 2 22 �
�

� � � �2.4

The Bayes estimate of   given the sample  is equal to� �� 2 2� � � d k   2

 2.5^ � � ��2 2 2 H d k 2 f d k 2,k +� � �� � � � 	 � � 	d k       Y   . E E�� � � �� �� � � ��2 2 2 2 2� � 1

For notational convenience we use the same symbol    to denote the p.d.f. of an outcome givenf
a specific parameter value, as well as the marginal p.d.f. of an outcome from    given theE2

history of observations  Although they are different quantities, there is no danger ofd k  .  2 2� �
confusion.

For the one–parameter exponential family case it is well known that the posterior distribution  
H d k   f x| d k   � � � �� � � � �� 2 2 2 2and the marginal density  defined in 2.3  and 2.4   respectively� � � �
are uniquely determined by the two dimensional sufficient statistic, for the unknown parameter,  

� � � � �k , y  ,  y   y . 2 2,j2,k 2,k
j=

k

2
� �where  Thus, we can assume that in relations  2.3  ,  2.4   and  1

k
�

1

� �2.5   is simply the vector  d k   d k   k , y  . 2 2 2 2 2 2,k� � � � � � �
2

 d k k ,  y    Y  y  ,  d k   Given  1 1 and  is defined by the following2 2 2,k 2,k 2 2� � � � � � � � � �2

updating scheme

 1 ( ) 1 2.6� � �d k d k , y  k, y + y k , m k , y , y  ,2 2 2 2,k 2,k 2,k� � � � � � � � � � ����� �
� �

where  m k,y,x� � � �� � � 	�
 �� � �� �

An stage  allocation policy is defined as a rule  0 , 1 , , 1 whereN– N  ,  � � � �� � � � � � 
 � � ��

 2.7� � �� � � �� � � � � � �� � � �� �t  t d k t, , d k t,  1 1 2 2

is equal to    or   ,  according to whether at stage    dictates to take a sample from  � �� � t  E� 1

or    respectively, whereE2

 2.8�� �k t,    .i j� �
j=0

t�1
1� � ��� 	� �

� �

The performance of a policy    is measured by�

 , 2.9� � �S t,    Y� �� �
j=0

t
�1

� �� � � �j ,k j,
�� �j



5

and the expected values

 2.10� � � �E E E E� � �S t,   S t, =   k t, k t,  ,� � � � � � � � � � � � � � � �� � � � � � � � � �2 21 1

 2.11� � �M t,H ,   S t,   S t,  .� � � � � � � � � ��o H� � �E Eo E � f H�� � �o

A policy  is optimal for the problem of horizon    and initial prior  on  if and� �*
o 2  N H    ,  � ��

only if

 M N,H ,  M N,H ,  ,� � �� �o o
*� � max 2.12

�
� �

where the maximum is taken over all sequential policies defined above.

A more general description of the problem is in terms of a loss function  which repre-L ,i   � ��

sents the expected one step loss incurred when the unknown parameter is equal to    and a�

sample from experiment    is taken, i.e.,Ei

 2.13� � �L ,i   X  ,  � � � � �� � �*
iE �

where    max Then the Bayes risk during the first  observations is� � � �*� � � 	 � 1� � � 
,  . t  � �

 2.14� � �R t,H ,   L , j   t   M t,H ,  .� � � � � �� � � � � �� � � �o H H o
j

t
*� � � � � �E Eo o

�
�1

Since,  in  2.14   is independent of  ,  maximization of  is equivalent tot E    M  H
*

o � � � �� � � � �

minimization of  This leads us to the alternative definition of an optimal policy  R .  �*�

 R N,H , R N,H ,  .� � �� �o o
*� �min 2.15

�
� �

In section 5 we will consider the following more general form of the loss function

 2.16
,   f  1 and  i
,        2 anif  � � �

�

� � 
 �
�� ����������

L ,i   
 i   
 i    ,� �

� � � � � �� � � �

� � � �� � ��

� � � � �

� � �

�

�
�

1 1

1 1

�

�

� �

� � � �

where  1 ,  0 . � �� �

3. OPTIMALITY  EQUATIONS – PRELIMINARY  RESULTS .  In this section we state
some preliminary properties and two theorems of Burnetas and Katehakis (1997a) on the
structure of an optimal policy for the finite horizon problem  It will be more convenient to�
discuss the problem in terms of   ,  the number of samples remaining to be taken until the endn
of the horizon  N .

Let  be the problem of maximizing  the expected sum of observations over a horizon  P n,k,y   � �
n ,   H k, y   ,    when the initial information about  is summarized by  i.e., the posterior� �2 � � � ��
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distribution of  given  Also let  be the problem of minimizing  �2 2 2  d k k,y  .  Q n,k,y   � � � � � � �
R n,H,  � �� ,  with the same conventions.

For problems  and  define the optimal value functionsP n,k,y   Q n,k,y   � � � �

 sup 3.1� � �V n,k,y     n, H k, y ,   ,� � � � � � � � �
�

�M

 inf 3.2� � �U n,k,y     n, H k, y ,   ,� � � � � � � � �
�

�R

respectively.

Using standard arguments of Markovian Decision Processes with general state and finite action
spaces cf. Dynkin 1979  one obtains� �

Proposition 3.1. a     The functions   are the unique solutions of equations  3.3  , � V n,k,y  � � � �

� �3.4   below.

 �V n,k,y r k,y V n ,k,y  , r k,y V n k ,m k,y,X  ,� � � � � � � � � � � � � � � � � ���max 1 1, 1� �� �� �� � ��E f 2� k,y

 n N ,  k N n ,  y  ,� � � �1,2, , 0,1, , 3.3� � � ��

 3.4� � �V 0,k,y 0 , � �

  The functions   are the unique solutions of equations  3.5  ,  3.6  below.b  � U n,k,y  � � � � � �

 � � �U n,k,y   c k,y U n ,k,y  , c k,y U n ,k ,m k,y,X  ,� � � � � � � � � � � � � � � � � ���min 1 1 1� � � E f 2�� � ��� k,y

 n ,2, ,N ,  k 0, , ,N n,  y  ,� � � � � �1 1 3.5� � �

 3.6� � �U 0,k,y 0 . � �

The one step expected reward and cost functions   and  1, 2  ,  arer k,y   c k,y  ,  i� � � � � � �� �� �

defined as follows.

 3.7� � ��r k,y   X     ,� � � � � � � �� E�� 1 1� �

 ��r k,y   X� � �� �E f k,y 2�� � ��

 X   dH  k,y  .� � � � � � � � � ��E EH k,y 2�� � ��� �

�

� � � � � �3.8

 � ��c k,y     r k,y� � � � � �� 	 � � ��� � �EH k,y
*

�� � �� � �

 dH k,y  ,� � � � 	 � �� � � � ���
� �� 1

� � � � �1 � �3.9
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 � ��c k,y      r k,y� � � � � �� � � � ��� � �EH k,y
*

�� � �� � �

 dH k,y  .� � � � � � �� � 	 � ���
� �� 1

� � � � �1 � �3.10

Moreover, the supremum and infimum in 3.1  and 3.2  are attained by a policy  and they� � � � �*,  
can be replaced by maximum and minimum  respectively.

In the next proposition it is stated that 3.3  and 3.5  are equivalent to the optimality equa-� � � �
tions of appropriately defined stopping problems, where “stopping" means switching to the
known experiment and staying there for the remaining trials. The proof is an extension of that
given in Bradt, Johnson and Karlin 1956  for the case of binomial populations.� � ��

Proposition 3.2.  a   Eqs. 3.3  are equivalent to the following� � �

 max 1 1 3.11� 
 � � �V n,k,y n  , r k,y V n ,k ,m k,y,X  ,� � � � � � � � � � � � ���� �1 � �E f k,y 2�� � ��

b� Eqs. 3.5  are equivalent to the following� �

 min 1 1 3.12� 
 � � � �U n,k,y nc k,y  , c k,y U n ,k ,m k,y, X  .� � � � � � � � � � � � � ���� � �E f k,y 2�� � ��

We will use the following quantities in the sequel, where  log  denotes the base e  logarithm.

Definitions  3.1.  For  , let y   y  � 1
k
�
j=

k

2,j
1

 log 3.13� � ��� � �� �, y   1
f y
f y
� � �
� � �

�

�1

 k,y  e dH� � �� �� ��
�

� �k , y�� �1�
o � �3.14

 d   ,  � �� �� � �1 � �3.15

   3.16� � � � � � �� �� � � � � �1� ,  

   3.17� � � � � � �� �� � � � � �1� .  

Remark  3.1.    From 2.1  it is easy to see that� �

          , 3.18� � ��� � � � � � � �� � � � �, y  d y  1

       1 3.19� � � k , y  , x   k  , m k, y,x  .�� � � � �� � � � � � �� � � ��� � � � � �1 1 1

Using Remark 3.1, we can rewrite the optimality equations so that the expectations in the right
hand side are taken with respect to the density  instead of the marginal density��	 
 ���
��� � ��� ��� 	  This is done in the next proposition.
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Proposition 3.3 a.    Eqs. 3.11  are equivalent to the following set of equations.� � �

 max 0, 1 1 3.20� � � �v n,k, y   q k, y v n , k , m k, y, X  ,� � � � � � � � � ���E f 2�� �� �1

 n ,N ,  k 0, , ,N n ,  y  ,� � � � 	1,2, 1� �

 v 0,k,y �� � 0 , 3.21� �

where

 3.22� � �v n,k, y   V n , k, y n k, y  ,� � � � � � � �� � �� � �1

and

 3.23� � �q k,y    e dH  .� � � � � ��
�

� �� � �k , y
o

�� �1 �

b� Eqs. 3.12  are equivalent to the following set of equations.� �

 min 1 1 3.24� � 
 
 � �u n,k,y   n c k,y  , c k,y u n , k , m k, y, X  ,� � � � � � � � � � � � � ���� � �E f 2�� ��1

 1 1 ,n ,2, ,N ,  k 0, , ,N n,  y  � � � � � 	 �

 3.25� � �u 0,k,y 0 , � �

where

 3.26� � �u n,k,y   U n , k,y k,y  ,� � � � � ��

 c k,y   e dH  ,� � � � �� � �
 � ��
�

� �� 1

� � �k , y�� �� �1 �
o 3.27  

 c k,y    e dH  .� � � � � �� � �� � ��
�

� �� 1

� � �k , y�� �� �1 �
o 3.28  

Theorem 3.1  describes the structure of the optimal policy with respect to stopping and

continuation intervals for  ,  while Theorem  3.2  gives a more intuitivy   y  � 1
k
�
j=

k

2,j
1

�

characterization in terms of inflation factors added to the Bayes estimate of   .  � �� �2

Theorem 3.1.  a   � For each  there exists a number  with the propertyn , k  y k   n� �

 3.29� � ��*� �n,k,y    �
�

�

�

�

 ,  y y k

,   y y k

if  

if  

� � �

� � �

n

n 
n

where  is the action indicated by the optimal policy in state  �*� � � �n,k,y   n,k,y  .
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b  �  The sequence  is nonincreasing in  y k   n .n� �

Theorem  3.2. a     For each  there is a real number  with the property� n , k ,y  n,k,y   �� �

 3.30
if  
if  

� � ��
� � � � �

� � � � �
* H k,y 2

H k,y 2
� �

� � � � � � � � � �

� � � � � � � � �
n,k,y    

,      n,k,y   
,      n,k,y    ,��� �

� �� � � ��

� �� � � ��

E
E

1

1

where  is the action indicated by the optimal policy in state  and�*� � � �n,k,y   n,k,y  ,  

 3.31� � ��� � �n,k,y   
q k,y k

k,y
� � ��

� �
n

�
 .

b   �  The quantities    are positive and increasing in   .��n,k,y n  �

Remarks.   The threshold  represents the amount of immediate reward which we cany k  n� �
afford sacrificing in order to obtain information about  which is valuable for the remaining�2 ,  
decisions.

An interpretation of the quantities  is that they represent a positive inflation, that is��n,k,y   �
added to the current estimate of the reward of  ,  in order to take^E    ,  2 H k,y 22� � � � ��E �� � ��� � �

into account the uncertainty associated with it.

4. ASYMPTOTICS FOR LARGE  N .  In this section we obtain properties of the optimal
policy that are related to its behavior when the planning horizon is large.  Before we proceed
with the analysis, we shall make another assumption in addition to those in Section 2.
Specifically, we assume that the prior distribution of  is continuous in  , , i.e. there is a–

–
� � �2  � �

prior probability density function denoted by  ,  such that  ,  with h dH h do o o� � � � � � �� � � �

h h  . o o� � �sup This assumption helps simplify the derivation of the asymptotic approxima-
�

�

tions below. However it does not restrict the generality of the results, since the discrete case
can be treated in an analogous but simpler way.

The derivations in this section are based on the optimality equations in terms of the regret
defined in 3.24 .  The main results are given in Theorems 4.1 and 4.2  which provide upper� �
and lower bounds for the optimal stopping regions. The proofs of these two theorems are based
on a number of intermediate properties, which are given in the appendix in Lemmata  A.1–A.7.

For each  define the stopping region 1n    S   k,y n,k,y  .n
*� � � � � � � � ��

Theorem  4.1.  Under the assumptions made,  when  n   	


     S     S   ,� ��� n n � �4.1

where

   k,y n c k,y c k,y  ,� � � � � � 
 � � � 
 � ��� � � � �� � 4.2

 S 4.3� � � � �n  k,y n c k,y 2 A n k c k,y   .� � � � � 
 � � � � � � 
 � �� ��
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Proof.  From 3.24  and Lemma  A.4 (a) it follows that  Thus, if � � u n,k,y 0 . � � �
n c k,y < c k,y ,  n,k,y  .  � � � � � � � � �� �� � then it is optimal to stop, i.e.  1 This proves the first�

*

part of  4.1 .  � �

In order to prove the second part, consider the allocation rule   denined as follows: a) take��i�
a fixed number  of samples from   ,  and b) take the remaining  samples from  i i n   E n i  � � � �2

E   E1 or   ,  according to whether 2

  ,  4.4c k i , m k,y,y , ,y   c k i , m k,y,y , ,y� 	 � 
 � � � � � 	 � 
 ��2,k+ 2,k+i 2,k+1 2,k+i1 � � � � �� �

or  

 c k i , m k,y,y , ,y   c k i , m k,y,y , ,y� 	 � 
 � � � � � 	 � 
 ��2,k+ 2,k+i 2,k+ 2,k+i1 1� � � � �� �  ,  4.5

respectively, where  denotes the new average after the  additionalm k,y,y , ,y   i  � 
 �2,k+ 2,k+i1

outcomes

 4.6m k,y,y , ,y   � 
 � � 	2,k+ 2,k+i1
k y

k k  
y   y

� �
���

 i i
2,k+1 2,k+i  . � �

Now from Lemma A.4 c  , rule   has the following risk� � �� i�

  4.7� � � �R n,k,y   i c k,y n i  k i, m k,y,Y , ,Y   ,�
�

� �
��� �

i
f 2,k+ 2,k+i� � � � � 	 � � � 
 � 	 � 
 �� �� E 1 � 1

where  min�� � � �k,y   c k,y , c k,y  .� � � � � � � � �� �

Note that in 4.7  the risk is the one corresponding to the transformed experiments (see� �
Remark 3.1) .

From Lemma  A.5, it follows that there exists  such that� � �

 4.8� � � �R n,k,y   i c k, y n i  i n, k, y   ,  i 0,1, ,n .�� �i � � � � � 	 � � � � � � � � 
�
A

k i�  �

If we consider the extension of to the real domain,�� �i   

 4.9� � � �� �� � � � � � 	 � � � � � �i n,k,y   i c k, y n i  ,   0  i  n ,  i  ,�
A

k i�  

then we can differentiate with respect to   i

 A 4.10� � � ����
�i   c k,y   ,� � � � � k n

k i
�

� � �2

 2A 4.11� � ����� i    0 ,� �k n
k i
�

� � �3  

hence  is convex. We also have�� �i   

 0   A 4.12� � � �� ���
�c k,y  ,� � � � k n

k
�

2  

which is negative for  sufficiently large, andn  



11

 4.13� � � ����

�n   c k,y   ,� � � � � A
k n�

which is positive also for  sufficiently large. This means that    attains its minimum at some  n  �

i i n ,  i* , 1 for which  0 ,  i.e.� � � �* *� ��

 4.14� � �i   k n  k .* � A
c ,� � �k y ��

� 	 � �

Let  min Then  1 and, since   is convex� � � �i i     i i  .  i   i  ,  * * * *� � � � � � �� � �

 1  . 4.15� 	 
 	
� � �i   i* *	 
 ��

Note that

 1   1 1� 
 	 �
 � 	� i i c k, y   n i  * * *� 
 � 	 � 
 
 
 	�
A

k i 1� �*

   i c k, y   n i  � 
 � 	 
 � 	 � 
 
 	* *1 ��
A

k i� *

  n k c k, y  k c k,y  � 
 � 	 
 � 	 
 
 
 
 � 	 
2 A 1 A� � 	 �� �

 n k c k, y   n,k,y� 
 � 	 
 � 	 � 	 2 A  . 4.16� � 
 
 	� �*

Combining the above inequalities we have

  . 4.17� 
 
 	R n, k, y   n,k,y�� �� �i* � � ��*

From this discussion we see that for each  there is an allocation rule, namely  � �n,k,y   � �� �i n,k,y   nc k,y*� � � � � �as described above, which has expected risk less than   . Thus, if  �* ��
� �* *,  then it is not optimal to stop, since continuing for    more steps gives a better policy.i

So    implies that  2 ,  or equivalently  1  impliesn c k,vy n,k,y   n,k,y   � � � � � � � � � ��� � �* * *�

that   ,  which completes the proof of the theorem. n c k, y� � � ��� �*

Based on Theorem 4.1 we now derive an asymptotic approximation of the optimal policy  
�*� � � 	n,k,y   n   as  .

Let

 G k,y,   
k y  ,  y–
k  ,         y  ,– –

��
� � � � � � � � �


� � � � �
� � � I �

� �
� �

�

*

1
, if  

, if  
4.181 1

1

� � � �

� � �
�

where  ,   log  is the Kullback–Leibler information number .I E� � �� �
�
� 


f X  
f X  
� � �
� � �

�

�
 

Theorem  4.2.  If then the optimal policy corresponding to the solutionh 0 ,   ,  o� � � � �� � �

of 3.40   when can be approximated by the following policy.� �  n   ��
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�

� � �
1� � �

� � � � � �
n,k,y

if y   G k,y, n
     ��

�

�, 
,

       and  log
otherwise

4.191 1

2
� �

Proof.  We will show that, for large   ,  the sets  and  defined in Theorem 4.1  can bothn S   S   n n

be approximated by the set   and  log We firstK k,y)  y   k G k,y, n  .  � � � � � � � � � � �� � �1 1

consider  S which are described by the following relationn ,  

    .
c k,y
c k,y

�
� 	 �

� 	 �






� �

�

�

1
n    4.20

From 4.20  we see that, as  at least one of the following conditions holds: � � n  ,  ��

 0 ,  or  � 

c k,y c k,y   .  � 	 � � 	 � � �� �

From the definition of  and    in  3.27 , 3.28   it follows that, for anyc k,y   c k,y� 	 � � 	 �
 
 � � � �� �

fixed   , in order for either of the above conditions to be true it is necessary that  y k  .  ��
From Lemma A.6 it is easy to see that, when  the values of   for which the abovek  ,    y��
ratio tends to  0  are those included in the range  We can now use explicitly they  .  � � �� �1

results of Lemma A.6 to obtain an asymptotic approximation for the inequality in 4.20  .  In� �
the case  that we are interested in, we have from  A.32   thaty  ,  � � �� �1 � �

 

c k,y  .� 	 ��
2 h

y k
o 1

1
2 2

� �
� � �� �

�

� �

As for  we must consider three cases corresponding to b1, b2 and b3 of Lemmac k,y  ,  � 	 �
�
A.6 , namely   a   b   and  c    For each one of� � �y  ,  y  ,  y  .  – – –� � � � � � � � � � � �� � � � � � � �1

these cases 4.20   takes the following forms:� �

In case  a    � �

 4.21
 � �






c k,y
c k,y

     .
� 	 �

� 	 �
�

�

�

2 1h

y h  k e– – n
o

2
1 o

� �

� � �� � � � �� � �� � �

�

� � � � � � �

1

1
k , y–� ��� �1 �

Since  from Lemma A.3 ,  therefore, the above approximate ex-y  ,  , y 0 , – –� � � �� � � �� � � �1

pression is decreasing in    and since  the inequality holds fork , n   ��

 , log log 4.22� � �k | y   n o n  .–�� � 	 � �� �1

For cases b  and c  we can show in the same way that the approximate solution of 5.22  is� � � � � �

 , log log , 4.23� � �k | y   n o n  –�� � 	 � �� �1

and

 log log , 4.24� � ��k y ,   n o n  I �*� � � 	 � ��1

respectively.

We now turn to the inequality which defines the set in  4.3 . This can be rewritten as S   n � �
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 4.25� � �
�

�

� � � ��

� � �

c k,y
c k,y

   .�

�

2
4 A� � �n k

n2

We can use again the approximations obtained in  Lemma A.6,  to obtain relations analogous to
� � � �4.22 , (4.23) and (4.24) for the three cases. For case a  we now have

 4.26� � �
�

�

� � � ��

� � �
�

c k,y
c k,y

      .�

�

2
4 4h n k

y h  k e– – n
o
2

4 3
o

k 2
� � � � �

� � �� � � � �� � �� � �

�

� � � � � � �

1

1 1
� ��� �–, y1 �  A

Consider (4.26) with the inequality replaced by equality. Assuming that for fixed    the uniquey
solution in  satisfies  , the right hand side is of the same order as   , thus wek k/n  0  1/n�
obtain the following

 log log 4.27� � �k , y   n o n  –	� 
 � � � �� �1

for the asymptotic solution of the equality. This form is in agreement with the assumption  
k/n 0 .  k� Since the approximate expression in 4.26  is decreasing in   ,  while the right hand� �
side is increasing, the required inequality will hold for

 log log 4.28� � �k , y   n o n  .–�� � � � � �� �1

In cases  b   and  c   the corresponding expressions will be� � � �

 log log 4.29� � �k , y   n o n  ,–�� � � � � �� �1

and

 log log 4.30� � ��k y ,   n o n  .I �*
1� � � � � ��

If we combine  4.22  with 4.28  4.23  with 4.29  and 4.24  with 4.30  ,  we can see� � � �� � � � �� � � � �
that both  and  can be described approximately for large    by the following inequalitiesS   S   nn n

 log when  and 4.31� � �k , y   n  ,  y  ,  – –�� � � 	 � �� � � �1

 log when  4.32–� � � 
 � ��k y ,   n  ,  y  .I � � �*
1� � � 
 � �� � �1

Therefore, based on Theorem 4.1, we can also approximate the stopping set  with the sameS   n

region, and now the asymptotic interpretation of the optimal policy is possible. Namely, in the
case  stopping is required when  log and in the case  –� � �� � 
 �y  k y ,   n  , 
 � � � � � �� � �1 1I *

y   k , y   n .– –	 � � � � � �� � � �when  log� 1

Remark  4.2.  a� A consequence of Theorem  4.2 is that, for large , it is never optimal to  n
stop sampling from    when  even if the current posterior distribution of  isE y  ,   2 2� � �� �1 �

unfavorable, i.e.  EH 2� 
 
 � �� � �1 .

b   � The asymptotic policy derived in Theorem 4.2 is independent of the initial prior p.d.f.  h  ,  o

when If this condition fails, it can still be shown, based on Remark A.1,h 0 ,   .  o� � � � �� � �

that a more general form of the asymptotically optimal policy is
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�

� � � �
1� � �

� � � � � � �
n,k,y

y   k , y  n
2 ,   � 1 ,  if   and  log

otherwise
4.33

� 1 � �

where  

   inf 4.34� � � � �� � �1 ,  h 0  ,o� � � 	�

and    is the value of    which maximizes  in the support of the prior p.d.f.� � �� � �� �, y   1

c�  The policy in  4.19   is analogous to that described in Lai and Robbins 1985  and in Lai� � � �
� �1987  , in the general case where there are unknown experiments to be compared. Theirm 
asymptotically optimal policy is based on the use of upper confidence bounds which essentially�
estimate the unknown parameters  in the following way. If    is the average of    successive� x Tj j

observations from experiment   ,  1 the upper confidence bound is defined asE j , ,i ,  j � 


 inf  , , 4.35� � � � � � � �U T , x    ,j j j x x� � 	� � � �j j I
g T /N

T
� �j

j

where  is the maximum likelihood estimate for  given and  is a function that�x j j jj     T , x  ,  g  � � �

satisfies certain assumptions cf. Lai 1987 , among which is that  log   when  � � �� g t t� � � ��

t � 0.  Then the policy suggests sampling from the experiment with the largest upper
confidence bound.

Here, from 4.33  we can see that for every state  there is a number  such� � � � � �n,k,y   n,k,y   �1
�

that if the known parameter  of    is less than  then it is optimal to continue,� �1 1 1  E n,k,y  ,  � � �
otherwise it is optimal to stop. The value of  can also be determined from  4.33   as�1

� � �n,k,y   � �
follows .

 inf  ,  , if  4.36–� � � � � � � � � � �� � � � � � �1
� � � � � � � � � � �n,k,y   y y  ,  y  ,* *

1I log n
k � �

thus,

 inf  ,  if  4.37–� � � � �� � �1 1
� � � � 	 � � � 
 � �n,k,y   , y  ,  y  .– –� � � � �

log n
k

Therefore,  plays essentially the same role as the upper confidence bounds, if one�1
� � �n,k,y   

considers the fact that  0  in (4.35).T /N j �

5. GENERALIZATION OF THE REGRET.  The regret  was defined in  2.16   as R t,H,� �� � �
the Bayes risk corresponding to the loss function  defined in  2.15  .  It was shownL ,i   � �� � �
that, for this particular choice of loss function, the problems of maximizing the expected sum of
outcomes and minimizing the Bayes risk are equivalent. In this section we consider a more
general form for  , namelyL ,i� ��

  , 5.1� � �L ,i   X� � � � � � �� � �* E 1� i
�

� � � � �� � �– 1

or equivalently
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L ,i ,
 i
 i

 
� � �

� � � � � �� � �

� � � �� � ��

� � � � �

� � �

�
�
�

1 1

1 1

�

�

, if  1  and  
,  if  2  and  5.2

� �

� � � �

�

� � � � �

0 ,   otherwise

where  1 ,  0 . This definition of  includes  2.15   as a special case obtained� �� � � �L ,i   � ��

when  1  and  0.  It also includes other useful loss functions, such as the quadratic loss� �� �
� � � � �� � �2, 0  .  Furthermore, the case  0  corresponds to the existence of an indifference
region in a neighborhood of the known value, in which no loss is incurred, i.e. , if  �2 1	 � �� �,
� �1 � � ,  then both actions are optimal.

Remark  5.1.  To avoid trivialities, we assume that  min This ensures� �
 � 1 1� � �� � �– ,  .  
–

that there are possible values of  at both sides of  , which are distinguishable from  with� � �2    1 1

respect to the loss function, thus the decision problem is not trivial.

For the loss function defined in 5.1 , the second equality in 2.16  is not true in general.� � � �
Therefore there is no immediate analogue for reward maximization. Nevertheless, we can still
formulate optimality equations for the problem of minimization of the regret  as inR n,H,  ,  � ��
section 3. For the finite horizon case Theorem 3.1 is still valid. Furthermore, there are
analogous expressions for the asymptotic approximations derived in section 4 . In the
remainder of this section we highlight the necessary modifications in the formulation,  the
intermediate properties of the one step regret functions, and the proofs.

For the dynamic programming formulation, we can still define the optimal value function for
the regret as in 3.2 . Then the optimality equations for  have exactly the same form� � U n,k,y   � �
as those given in 3.5  and 3.12 , the only difference being that the one step cost functions� � � �
defined in 3.9  and (3.10) now take the form� �

 5.3� � �c k,y  L ,  ,� 
 � � � ��� � � EH k,y�� � � ��

and more specifically

 5.4� � ��c k,y   dH k,y  ,� 
 � � � � � � �� � � � ���
�

� � �

�

� 1+

� � � � �1

 5.5� � ��c k,y   dH k,y  .� � � � � � � � �� � � � ���
�

� � �

�

� �1

� � � � �1

Proposition 3.3.b still holds, but now with

 c k,y     e dH  ,� � � �� � �� � �� � ��
��

� � �

� � �

� �

� 	

1

1� � �k , y
o

� 5.6  

 5.7  � � ��c k,y    e dH  .� � � � � � �� � ��
��

� � �

� � �

�

� 	

1

1

–

k , y
o� � ��

The discussion in section 3 was based on the optimal reward function  and thev n,k,y   � �
optimality equations 3.20  .  If we define� �

 5.8� � � � �q k,y   c k,y c k,y  � � � � � � � � �� �
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and

 5.9� � � � � � �� �v n,k,y   n c k,y u n,k,y   ,� � ��

then the quantities  and  although they do not possess immediate inter-q k,y   v n,k,y  ,  � � � �
pretation as in section 3, satisfy optimality equations analogous to 3.20 . Thus we can� �
establish the structure of the optimal policy for the finite horizon problem analogous to that
described in Theorem 4.1.

Now we turn to the asymptotic properties corresponding to those of section 4. Lemmata A7–
A8 in the Appendix are the equivalent of A5–A6  for this case.

Let  The analogue of Theorem  4.1  is presented in the following theorem.� �
�1�

2

2  .  

Theorem  5.1.    Under the assumptions made, when  n   ��

 S   S   S   ,	 	n n n � �5.10

where

 S   k,y nc k,y c k,y  ,� 
 � � � � � � � � � � 
n � � � �� � 5.11

 S log 5.12� � � �n  k,y nc k,y  
 � � � � � � � 
�
2 c k,y A n

c k,y
� � �

� � �
�

�
�

��

�  

Proof . Eqs. 5.11   can be proved in the same way as 4.2  . For 5.12   we can also use the� � � � � �
same arguments as in Theorem 4.1, up to inequality 4.8 , which here, using Lemma A.8, takes� �
the form

   5.13� � � � �R n,k,y i c k,y n A e i n, k,y   ,  i 0,1, ,n .�� �i � � � � � � � � � � ��
– k i� �+ � �

For the extension of    in the real domain we obtain�

 5.14� � � ����
�i c k,y n A e   .� � � � � � – k i� �+ �

Thus,   is still convex, and for    sufficiently large. Therefore, the� ���0 0 ,  n 0  n� � � � ���

minimum is attained at the root of the first derivative,

 log 5.15� � �i k .* 1
�

A n
c k,y

�

� � ���
 �

Let  min Then   1 and, since   is convex� � � �i i     i i  .  i   i  ,  * * * *� � � � � � �	 � �

 1 5.16� 
 �
� � �i   i  .* *� 
 � ��

But

 1 1� 
 �
 � �� i i c k,y    nA e* * � � 
 
 � ��

– k i� �+ +1* �

  1� � �i c k,y   nA e* � � � � � ��
– k i� �+ * �
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 log 1� � k  c k,y  
c k,y c k,yA n

c k,y
� � � � � �

� � �
� �

�
� �

�� �

�
� � � � � � � ��

 2  n,k,y� � �
c k,y A n

c k,y
� � �

� � �
�

�
�

��

�
log  . 5.17�*� � �

Now the second inclusion relationship in (5.10) follows from (5.17) in the same way that
the second inclusion relationship in (4.1) follows from (4.16).

We finally establish the approximation of the optimal policy for large horizon, similarly to
Theorem 4.2 , for  0 .  Define the following sets� 	

 �K n,k,y    k,y    y  ,  1 1 1� � 
 � � � � � � � � � � �� � � � � �

      , y   , y   � �� � 
 � 	 � � 
 �� � � � � �1 1 1 1 and
      k , y , y n   log   , 5.18� � � 
 � � � � 
 �� 	� �� � � � � �1 1 11 � � �

 K n,k,y     k,y    y   –� 
 � � � � � � � � � �� �2 � � � � �1 and 
        , log  , 5.19k y , y n� � � � � � � 
 �� 	I � � � �� �*

1 1 1� � � �

 and  , log   . 5.20� � � �K n,k,y     k,y     y   k y , y n– –3� � 
 � � � � � � � � 
 � � � � 
 �� 	� � � � � �� ��1 1 1

Theorem  5.2.  If and  then the optimal policy as can be� � � �� � � � � � � �0  h 0 ,   ,   n   o

approximated by the following policy.

�1� � �
� � � 	 � �n,k,y  k,y     K n,k,y  

i=
,   

�
�
�

1,  if    
1

2 otherwise
5.21

3
i � �

Proof. The approximate characterization of the sets  of Theorem 5.1 can be derived in theS   n

same way as in Theorem 4.2 , now making use of Lemma A.9 for the asymptotic
approximation of  As for the approximation of  we note the following. It mustc k,y  .  S  ,  � 
 �� n

be still true that  tends to infinity in order for 5.12  to hold. So  log willc k,y   c k,y   � 
 � � 
 �� � � �� �

be positive for and  k,y S  ,  � � � n

 log ( ) 5.22� � ���* n,k,y    2 A n  ,�
c k,y� � ���

�
�

or in set notation

 S log ( ) 5.23� � � �n   k,y nc k,y  A n   .� � � � � � � � 	�

2 c k,y� � ���
�

�

Instead of approximating  S we obtain asymptotic characterizations for the sets on the rightn  ,  
hand side of  5.23  .  Following the same reasoning as in Theorem 4.2, it can be shown that� �
these sets, as well as  S are approximately described by  as they were defined in  n i ,  K n,k,y   � �
� � � �5.18 – 5.20  .

6. CONCLUSIONS  AND  FURTHER  WORK.  The asymptotic policy of Theorem  4.2  
has interesting properties that are intuitively expected. In each step, if the average of the
observed samples taken from the unknown experiment    exceeds the expected value of theE2
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outcome for the known experiment  ,  i.e.  we continue sampling from   .  E y  ,  E1 1� � �� � 2

Otherwise the decision is based on the quantity 

G k,y
k y  ,  y–
k  ,         y  – –

� � �
� � � � � � � � �

� � � � �
� I �

� �
� �

�

* , if  
, if  

6.1  1 1

1

� � � �

� � ��

where  denotes the number of samples taken from   ,   is the maximum likelihoodk  E y  2
*� � �

estimate of the unknown parameter  of    based on the average  of the previous  �2 2  E y  k  
outcomes, and  is the Kullback–Leibler information number, which represents inI � �*� � �y ,   �1

some sense the estimated distance between the distributions of the two experiments Kullback�
and Leibler 1951 . We continue or stop, according to whether  log   or  � �� G k,y n� � �
G k,y n , G k,y   � � � � �log   respectively. Note that  increases when either the number of available
samples or the Kullback–Leibler information number increases. So this quantity is a measure of
the confidence that the true value of  is really less than  when the sample average we� �2   , 1

have observed is less than   .� �� 1�

The following conjectures concerning the asymptotically optimal policy for the case that there
are  unknown experiments to be compared, instead of one known and one unknown, i.e., them �
multi–armed bandit problem  can be made. A key idea here would be to consider the policy�
described in Theorem  5.1  as a function of the value  of the known experiment, as we did in�1  
Remark 5.1.b. Using  similar sufficient statistics to those used for   ,  we can compute, usingE2

� � � �4.36   and  4.37 ,  for each unknown experiment  1   a value    of aE  ,  i , ,m ,i i� � �1

hypothetical known experiment  , which would make it indifferent to continue sampling from  E1i

E E  ,  i or switch to   for the remaining samples. Then we can compare the “index" values  1i 1i�

and take the next sample from the experiment with the largest index value. We shall deal with a
rigorous statement and justification of these conjectures in a next paper. The idea to replace the
unknown parameters with indices equivalent with them in some appropriate sense, appears in
the fundamental papers of Lai and Robbins 1985 , as we have already discussed, and Gittins� �
� �1979 , which deals with the discounted infinite horizon version of the multi–armed bandit
problem.

A P P E N D I X

The next lemma, summarizes properties of  the Kullback–Leibler information number  ,I � �� �  

 log A.1� � �I E� � 	 
� �,    .
�

f X
f X
� � �
� � �

�

�

Lemma  A.1.  When  belongs to the one parameter exponential family 2.1 ,� � �

 A.2� � �I � � � � � � � � � � � � � ��� � � � � � � � � �,    ,

 A.3  � � �I � � � � � � �� � � � � � �,   d  ,�
�

�    
��

   . A.4� � � �� �

� � � � � �
� �

� � � �
� �

� � � � � � �I

Proof.  For A.1)  and A.2  see Lai 1987 . A.4  is immediate from 2.2  and A.3 .� � � � � � � � � � �
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Lemma A.2 indicates a useful relationship between the log-likelihood ratio  defined in  �� � ��, x   �1

� �3.13   and the Kullback Leibler information number.

Lemma  A.2. a   is concave in   . �  �� � �� �, x   1 �

b�   ,  such that max where�
�

x     x , x   , x  ,  � � � 	 � � �� � � 	 �� � �� � � � � �* * *  �
� �

1 1

� � � � � � �

�

�

* –

– –

–
� � � � 
 �� � � � �� � �

� � � � �

� � 


x   =  x    , x  , x              
x   , x

– –
–

x    

�
�
�

� �

�

� �

1 1

1
1 1

1

if  
  , if  and  A.5

–   , if  and 
  � �

  �� � � � �� � �� � � �
–

, x  , x   .–1 1 

  
Moreover, if  then  �–1� � �x  ,  �

 , A.6	 � ��� � � � �� � �* *, x   .1 1I �

c   � If  then  x  ,  –
 � �� �

 ( ) 0 . A.7� � �� �� �–, x   1

Proof .  From  3.18   � �

 A.8	 � �
� �� � �

�
� � �

� �

�
� �

, x
  x  ,1

 A.9
,

	 � �
� ��� � �

�
� � � 	 � � � 


� �1 x
      0 .

�
� � � �

�

� ��

Hence  is concave in  ,  and its maximum in    is attained either at the point�� � �� �, x   1 � � ��

where 0 i.e., at if this point belongs to   ,  or else at one of the end- � 	� , � � �� ��	 ����
points. Furthermore,

 	 � � ��� � � � � � � � � � � � � � � ��� � � � �– – –� � �x , x   x x x1 1 1� � �

  x x x  	 � � � � � � � � � ��� � �– –� �� � � � �1 1
–� � � � � � � ��

  x ,  .	 � � � �I � �–�
1 � �A.10

This proves a  and b .� � � �

For c  we first note that every concave function has at most two roots, lying on opposite sides� �

with respect to its maximizing value.  Hence  the equation   �x  ,  , x 0  ,� �� � � 	� � � 1

besides  has at most one more solution  possibly not in   ,  which has the following
~

� � �1 ,  x  ,  � �
property

 if  and
~
�� � 
 � � 
 
 � �x   x      x  ,  � � � �–1

1 1

 if  �1 1
1  x   x    x   .

~

 � � 
 � � � � �� � � �–
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When  it is true that  , thus 0 .
~

x ( )  x x   ( , x)– – –� � � � � � � � � � � � � �� � � � � �� � � �1 1 1
–1

Lemma  A.3.  Let  denote the solution of  the equationx(n)  

 A.11� � �
A

x e� �x
1
n  ,

for  and constants  0 .  Thenx, n 0 ,  , A, � �� �

a�  (A 11 holds with  “ "  for  . ) x x n  .� � � �

b�  There exists a function   such that  (n)�

  (  log(log as  and  log� �n) n)   n   x(n) n (n) .� 	
 � �� �

Proof . a    For  0  the left hand side of (A.11) is increasing in  � A, x .  � �

b�  For  (A.11) can be rewrittenx x(n)  �

 A.12� �� �
� � � � � �log log log
 ��
� � �

from which it follows that

 ��
� �
log log log�� ����� ��

�
.

Substituting this expression for in the right hand side of (A.12),��
�

 � ���
� � � �log log log
 � ��� �log log log�� ����� ��

�

Let  log log log Then�(n) n x(n) , B  A .  � � � �� � �

 � ��
� � log log� �log log log�� ����� ��

�
� �

   � 
 � � �� �log log log log� �� �� � �
�log

log log
log����

� �
�

,

or equivalently

 A.13� ���� � � �log log log� � � �� � �� � �
�log

log log
log����

� �
�

B

From (A.11) it follows that and , thus Therefore,���� 	 
 ���� � � � 
�lim lim
��� ���

log����
����

rewriting (A.12) as

 ��
log loglog� �
���� ���� ����

����
� � �

�

it follows that

 ,lim
���

����
�

�
log �

�
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and

 A.14lim lim
��� ���

log log
log log
���� ���� ����
� ���� �� � � � � �

From (A.14) it follows that

 lim
���

log� �� � � � �
� log

log log
log����

� �
�

,

thus, from (A.13), as , This completes the proof.	 
 � �	� �� � log log	� 

The following lemmata describe useful properties of the transformed one step regret functions.

Lemma  A.4.  The quantities  defined in  3.27  , 3.28   satisfyc k,y   � 
 �� � � � �

a  � c k,y 0 ,  k,y .� � � �� � � �  A.15

b  � � �   is increasing in  k ,  c k,y  y .� � ��
 k ,  c k,y  y .� �   is decreasing in  � � ��

c  � E�1 � � � � � � � 	 
 � � �c k , m k,y,X   c k,y  .1 A.16� � � �

Proof .  The proof of a  is immediate by definition. Part b  can be proved by taking the� � � �
derivative in  and observing that  .  Part c   expresses an intuitive martingale� � � �� � 
 � � �� � �

property, which can be easily proved as follows. For  =1 ,  we use 3.19  and 3.27   to� � � � �
obtain

 1 1E�1 � � � � � � � 	 
 � � � � � � � � � � �c k , m k,y,X    c k ,m k,y,x f x dx� �� �
� �1 �

   e dH f x dx
 � � � � � � � � �� �
�

�
�

�

�

1

1
 

–
k+ , m k,y,x

o� � � �� � � � ��1
1

� � �

  e dH f x dx� � � � � � � � � �� �
�

�
� �

�

� �

1

1 1
 

–
k , y + , x

o� � � �� �� � � �� � �1

 e f x dx dH� � � � � � � � � �� �
�

�

1

1
 

–
k , y

o
�

�

�
� � � � ��� ��

 e dH    c k,y  .� � � � � � � � ��
�

�

1

1
 

–
k , y

o
�

�� � ��� ��
�� � �A.17

The case =2  can be proved similarly.�

Let us define the function  

 k,y   c k,y , c k,y  .� � � � � � � �� �� min A.18� � � � �� �

For this quantity the following result holds.

Lemma  A.5.  uniformly in  �� � � � �k,y O   y .1
k

Proof.  It suffices to prove the following intermediate claim.
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  1,2,   ,2 . A.19� � � � � � � �A  0  c k,    ,  k 	 
 � � � � � � 
 � �� �1 �

 A 
k

Indeed, suppose that  A.19   holds. Then we consider two cases.� �

Case a.  From Lemma A.4.by   .  � � �� �1

 A.20� � � � ��� �k,y   c k,y  c k,    .� � � � � � � � � � 
� �� 1
 A 
k

Case b.  In the same wayy   .  
 � �� �1

 A.21� � � � ��� �k,y   c k,y  c k,    .� � � � � � � � � � 
� �� 1
 A 
k

So  which proves the lemma.��k,y  ,  k,y ,  � 
 �A
k

We next prove A.19  .� �

From  3.27� �

 A.22� � ��c k,   e h d  .� � � � � � � � �� � � � ��1 �
�
�

�

� 

   –

o
k ,�� � ��� �� �1 1�

But  and from  A.12   �� � � �� � � � � � � � � � �� � � � �� � � � � � �,    ,  ,  � � � � � � �1 1 1 1 1 1� � � � �I

 A.23� � �� � � �
�

2

2� � �
� � � �� � �

�
� � �

1
1 1 12

  ,     .  �
� � �� �1

2

2

From mean value theorems of calculus we obtain

   A.24� � � � � � �� �� � � � � � �1 1� � � � � � �   ,� � ���

for some  So for  � � � �� � �1 1,  .   ��

    .� � � �� �� � � �2 �1 � �A.25

From A.23  and A.25  we obtain� � � �

  A.26� � �	c k,    h e d   .
       

–

� � � 
 � � � �� � � �

�

� �1 1� 2 o
 

�
��

–k �1
1� � �� �

2

2

Let  ThenA   .  �
�

�
2 o

1

h

 1 A.27� � ��c k,      e    .� � � � � � � � �� �1 �

A A
k k

–k �1
1� � ��

– 2

2
�

  

Following the same reasoning it can be shown that

 A.28� � ��c k,    ,� � � � �� �1 �

A
k



23

and A.19  is proved. This completes the proof of the lemma.� �

The next two lemmata describe asymptotic properties of  c k,y  .� � ��

Lemma  A.6.  If  and  then the following asymptotic relationsh 0     y  ,  o� � � � � � � �� � � � �1

hold, as  k  .�	

1.   For 
 � 
 ��

  A.29
 � �
c k,y      .� � ��
h
y k
o

2 2
� � � �

� � � ��
� �

�

1 1

1

�

�

��

2.  For   ,
 � 
�

 If  then  a)  � � �� � � � � �– y  , �1

 A.30
 � �
c k,y   y h y e   .� � � � � � �� � � ��� � � �* *
o

k y , 2
y k

I� � � �
� � ��

� �
� �

*

*
�1 � ��

 b)  If  then  y   ,  –� � �� �

 A.31� � ��c k,y    .� � ��
� � �

� �

� � � �
� � �
– –h

y k–

eo k , y–�� �� �1 �

 

 If  then  c)  y   ,  –� � �� �

 A.32� � ��c k,y   h  e   .– –� � � � � � � �� � � �o
k , y–

– k
�� �

� �
� �

� �
�1 � � ��

Proof .  The proof is based on the Laplace method for approximating integrals of exponential

functions cf. Erdelyi 1956 .  From 3.27   we have� � �� � ��

 A.33  � � ��c k,y   e h  d   ,� � � � � � ��
�
�

�

1

1
 

–

o
�

� � � �k , y�� �� �

 c k,y    e dH  .� � � � � �� � �� � ��
�

���

�

1

1� � �k , y�� �� �
o A.34  

From Lemma  A.2  we see that, when attains its maximum value in   y   ,  , y   � � � � � �� �� �1 1�

� � � � � for  =  ,  and in   , for   ,  where    or  ,  according to– –� � � � � � � � � � �1 1 1
*,     (y) 

–
�� �

whether  or    respectively. Therefore, when  ,  the main� � � � �� � � � � � � � � � �– –y  ,  y  k  �1

contribution to the value of  for 2 ,  will arise from the values of  the integrandc k,y    � 	 
� 
 � ��
in a neighborhood  of this maximizing value. The main idea of the Laplace method is to intro-
duce a new variable of integration  such that  z ,  

 z   , y , y  ,  � � 
 � � � 
 �2
� �� �� �1 1 � �A.35

 for     , A.36� � � � � � �z  0  0  ,  � � � � � � �

and to reduce the area of integration in a neighborhood of   .  �

We first consider the case  .  From A.35
 � ��
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 A.37� � �2 z dz  y d  ,� � � � ��� � �

 A.38� � �d   2 dz .� � z
y� � �� �

Here  and so for  0� � � �� �1 1 ,  , y 0 ,  �� � � ��

 A.39� � ��c k,y e h  d 2 z  e dz ,� 	 � � � � � � ��
� �
�

�

�

1

1

1

 0

          +

o

   Z
–

�

� � � �k , y k zz h z
y z

l� � � � �� � � ��
� � � ��

� � � �

� �
� o 2

where

 A.40� � �Z , y  .�
� � � � �� � �1 1�

Since only the values of close to zero are significant, we can expand the region of integrationz  
to infinity

 A.41� � ��c k,y    2 z   e dz  .� � � ��
�
0

     
–

�

� � �

� �

� � � � ��
� � � ��

h z
y z

k zo 2

We can further approximate the above expression by substituting  with its value at  
h

y
o� �
� � �

�

� �
  

z 0,   .  	 i.e. at  Then we integrate by parts, considering    a function of the integration� � �	 1

variable  z.

 c k,y        2 z z   e dz  � � � � ��� � ���
h

y
–k zo 2� �

� � �
�

�

1

1�
�
0

     �

� �

        z   de dz  � � � ��
h

y k
–k zo 2� �

� � � ��
�

�

1

1�
�
0

     �

� �

       e     d z .� �
h d z

y k dz
kzo 2� � � � ��

� � � ��
�

�

1

1�

� � �
0

     
–

�

� �A.42

But

 A.43� � �
d z

dz
  z   z   , 

�� � ��
� � �� � � � ��

�
� � � ��� ��d 2 z

dz y z
�

� �  �
� � � ��

from  A.38  .  Substituting again  with its value at  � �
� �

� �

��� � ��
� � � ��

z
y z   z 0 ,�

 c k,y        2z e   d z � � �� � ���

h
y k

kzo
2

2� � � �
� � � ��
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�
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 �
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–

�

  



25

       ,�
h
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o

2 2
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� � � ��
� �

�

1 1

1

�

�

��

 � �A.44

and  A.29   is proved.� �
We now consider the case   and each one of the three subcases.� � �

2.a   � � � � �� �1� � � � � � �y  .  y  ,  
–

� � Here  while from Lemma A.2,  *

�� � � � � � �� , y y , .  � � �1 1I Following the same method, we obtain a relation analogous to� *

� � � � �A.39   for ,  namely for some �1 2,� � 	

 c k,y    e h  d   
 � � � � �� � ��� �
�

� �

*

*
2

–  

                +

o

� 1

1� � � �
k , y�� �� � �

   e   2 z   e dz  ,� k y , –k zz h z
y z

I� � � � � � �� � � ��
� � � ��

� � � �

� �

* 2o�1

1

�
Z

      Z2

� �A.45

where

 A.46� � � �Z   y ,  y , y  ,1 1 1 1� � � � � � � � � � ��I � �* *� � � �

 A.47� � � �Z   y ,  y , y  .2 2
* *�I � � � � � � � � � � �� � � �1 1�

We expand the integration region from    to  , and since in this case  corresponds�� � z 0  �
to  we substitute  with  � � � �� �* * *

o o� � � � �� � � �� � �� � � ��y ,  z h z   y h y  .� � � �

 c k,y    y h y e       e dz .� � � �� � � ��� 	 �
 � �� 2 A.48� � �* * –
o

–

      
k y , k zz

y z
I� � � �

� � � ��
�

� �

* 2
�1 �

�

�

For  it is  Applying de l' Hospital's rule to find the limiting value of  z 0  y 0 0 .  � � � � �� �� �
z

y z� � � ��� �
  z   when  yields� �

                   ,
z 0 z 0 z 0

  
z

y z
� � �

� � �� � � ��
lim lim lim

� �
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� � � �� � � ��� � � ���
��z yd

dz
2 z
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�

� �

  1
*

�

  �
� � � ��

thus

          A.49  lim � � ��
z 0

      .
z

y z� � � � ��
�

� �
2 �

� � ��2 y� ��� *

We also note that  for all  which implies thatz
y z� � � ��� �  �  0  z ,  

        A.50lim � � �
z 0

     ,
z

y z� � � � ��
�

� �
� 1

2 y� ���� � ��*

and the integral becomes



26
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� � � �
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I 1 �
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    y h y e  .� � � � �� � � ��� 2
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� �

� � �
��� � ��

� � � �
*

*
� � �* *

o
I 1   � � �A.51

Thus we have established  A.30 .� �

The remaining cases to be proved are 2.b  and 2.c  ,  which correspond to  Now we� � y  .  –� � �� �

have that  ,  from Lemma A.3.c . Performing the–� �� � �� � � � � � � �� � � �, y , y   0  –1 1

transformations A.43  , A.44   and reducing the integration region to a neighborhood of   ,  –� � � � �

i.e.   ,   for some  0 ,  we get– –� � 	 �� � � �

 c k,y e h  d   
�� � � � � � ��
�
�

� �        +

o� � � �k , y�� �� �1�

                     e   2z   e dz  ,� � k , y k zz h z
y z

�� � � � �� � � ��
� � � ��

� � � � �

� �
1 � �

0

Z
–o 2

� �A.52

where

 A.53� � �Z  , y , y   .– –
�� �� � � � � � � �� � � ��1 1

2.b)   When  a relation analogous to A.59  can be establishedy  ,  –� � �� � � �

 A.54lim
   

� � �
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z
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With the same reasoning as in the previous cases
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–
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–
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� � �

��� �
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1 � �A.55

which proves A.35 .� �
2.c)  Finally when  y  ,–� � �� �

 c k,y   e   2z  e dz  � � � � �� � ���
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y –
k , k z� � �

� �
� �� � � �

� � �
�� �o 2
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� �� � � � � � � �

� � � � � �
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–

�
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Remark  A.1.  In Lemma A.5 we made the assumption that the prior p.d.f  is positive on theh   o

entire parameter space  ,  .  This ensures that the values for which the log–likelihood–
–

� � �� � �
ratio attains its maximum value in the integration region are independent of  .  When thisho� ��
assumption is dropped, the same line of argument remains valid. However the expansion of the
integrals becomes more tedious, since one has to consider separately cases such as  0 ,  ho� � ��

for   ,  or for  or   .  According to each individual� � � � �� �1 1 1 1� 	 	 � � �� � � � � � ,  
case examined, one must integrate in a neighborhood of a value   ,  which is closest to the�

maximizing value, and has positive prior p.d.f. The corresponding asymptotic expressions
cannot be given in advance for the general case, but can be derived following the same general
approach.

Lemma  A.7.  If  and  then the following asymptotich 0 ,     y  ,  o� � 
 � � � � �� � � � �1

relations hold, as  k  .
�

1.  For   ,  � � ��

a)  If  ( ) then y   ,  � � �1

  A.57� � ��c(k,y, )   .1
h ( )

k
o �1  

b)  If  then  � � �( ) y ( )  ,  
–

�1 � �

 ( (A.58)��c(k,y, )  ( (y)) h (y)) e  .1
(� � �* *

o
k 2

( (y))k
I � �

*
1(y), )� �

� ��� *

4.  If  then  (A.59)y ( )  ,  c(k,y, )  ( ) h ( )  e   .
– – –

� �� � � � ��1 o
k ( , y)

–

( ) k
–� � � �

� �
1 | � ��

5.  If  then  (A.60)y ( )  ,  c(k,y, )     .
–

� �� � �1
� � �

� �

( ) h ( )
– –

y ( )
– e

k
o

�

k ( , y)–
� � �1 |

2.  For   ,� � ��

a)  If  then  � � � �� � � � � �– y  , 1

 A.61� � ��c k,y   y h y e   .� � � � � � �� � � ��� � � �* *
o

k y , 2
y k

I� � � �
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� � �
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*
1 � ��

b)  If  then  y   ,  –� � �� �

 A.62� � ��c k,y     .� � ��
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� �

� � � �
� � �
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o  e
k

k , y–�� �� �1 �

c)  If  then  y   ,  –� � �� �

 A.63� � ��c k,y   h  e   .– –� � � � � � � �� � � �o
k , y–

– k
�� �

� �
� � �

� �
1 � � ��
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Proofs of  Section 5 .

First note that Lemma  A.4  holds unaltered for the more general loss function of Section 5.

Lemma  A.8.  In the case  1  and  0 ,  O e uniformly in  � � �� � � �k,y  ,  y .  � � �–k �1
�
2

2

Proof.  The proof goes along the same lines as in Lemma A.5 , up to relation A.26  , which� �
takes the form

  ��c k,    h   e d   � � � � � � 	 �� � � � ��1 1
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� 2 o
–�

�

�
�

�

�

       
–
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k �1
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2

2

   h   e d   
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� � � �� � � �2 o
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�

 1
+  

�

�

�
�

  
–
�

k �1
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2

2

   h  e  
–

       
–
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�

2 o
–�

�

 1
+  

�

�

k �1
2

2
�

 d  �
�

�

   h   e  A e  .
– –

� � � � � � � � �� � � � � �2 o
– –�  A.641 1 1

� k k� �1 1
� �
2 2

2 2 � �

Similarly we can show that there exists  such thatA   2 � �

 A.65� � ��c k,   A e   ,� � � 	 �� �1 � 2
–k �1

 2

2
�

and so

 A.66� � ��� �k,y   A e   ,–k �1
�
2

2

with  maxA A  , A  .  � 
� 1 2

For the case    0  we can prove the following Lemma, using the same method as in Lemma� �
A.6.

Lemma  A.7.    If  then, according to the value of  ,  has theh 0 ,   ,  y c k,y  o� � � 
 � � 	 �� � � �

following asymptotic forms, as  .k   ��

1.  For    ,  if  then  � � �� y   ,  � � � �� � �1

 A.63� � ��c k,y      .� 	 ��
h

y k
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� � ��
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1 1
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k + , y�� �� � �1 1 �

2.  For   ,� � ��
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