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SYNOPTIC ABSTRACT

Consider the problem of estimating a linear combination of means from
populations with gifferent, unknown variances. We study the Bayes version
of the problem and derive the dynamic programming optimality equations for
the determination of optimal multi stage sequential sample size allocation pro-
cedures for several pertinent loss structures. We point out the relation of these
equations to the “inventory equations”. We develop heuristic procedures for

the case of Bernoulli and normal populations and give numerical comparisons.

Key Words and Phrases: Survey Sampling; Dynamic Programming.

1991, VOL. 11, NOS. 3 & 4, 199-221

0196~6324/91/030199~23 $28.00
199



200 Z. GOVINDARAJULU AND M. N. KATEHAKIS

1. INTRODUCTION.

Consider the problem of estimating a linear combination of means from
populations with different, unknown variances. Let II; be a population with
unknown mean py; and variance o?, i = 1,...,m. We want to estimate a
function A{x) of the unknown means, where

W) = 3 wii - | (1)

In (1) w; are known constants, i = 1,...,m, and u denotes the
vector (py1,...,4m). In this paper we consider the Bayes formulation of this
problem for several pertinent loss structures.

In this formulation we allow batch sampling. The objective is to de-
velop an adaptive rule for the determination of optimal batch sample sizes
with respect to some relevant loss structure. In Section 2 we obtain the perti-
nent dynamic programming optimality equations for the general problem and
discuss two cases of special interest. Case 1: II; is B(6;), : =1,...,m and
case 2: II; is N(ui,0?), i = 1,,m. We point out the relation of the op-
timality equations to those of the optimal inventory equations (cf. Whittle
(1983), Ross (1970)). In Section 3 we discuss heuristic approximations for the
determination of optimal one stage look ahead allocations. In Section 4 we
present numerical evaluations of the heuristic procedures using simulation.

This type of estimation problem typically arises in survey sampling and
in Monte Carlo simulation. In the context of survey sampling the Il;'s can
be thought of as different strata of a larger population, while in Monte Carlo
simulation they may represent different regions over which measurements are
taken (cf. Halton and Zeidman (1971)). The importance of this problem
was pointed out in Ghurye and Robbins (1954) where the case of two normal
populations was studied with w, = 1, w; = —1. They derived a two stage
procedure that was shown to be asymptotically consistent, in the sense that
the variance of the estimator tends to that of the optimal one stage allocation
procedure when the true values of the variances are known, as the sample sizes
become large. This work was extended for arbitrary m and w; in Peierls
and Yahav (1986) for an appropriately defined sequential procedure. In this
paper we propose and evaluate with simulation an intermediate procedure of
batch sampling which is between the two “extreme” cases of the two stage
procedure and the completely sequential one. For additional related work in
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this area see Robbins (1985) , Govindarajulu (1987), Dudewicz and Bishop
(1979), and Kuo and Mukhopadhyay (1990).

2. PROBLEM FORMULATION.

We define the K-stage allocation problem as follows. Suppose that
population II; is specified by a vector of parameters 6; = (0;,...,0;,) €
©; C R, where 6; follows a prior density gio(0:1,...,0;,,) with respect to
a o- finite measure ;. Given 0;, an observation from population II; is
a random variable X; with known conditional probability density f(z|6;).
The marginal distribution of X; is

e = [ S@l0a0(0M(a2) @)

In the sequel we assume that E(X;|0;) = pi = 0,4 and o*(X;|0;) =
0?=06,, i=1,...,M . We will need the following notation. An observed
sample of size n; from population II;, X;; =z, Xi2 = 2i2,..., Xin;, = Zin,
will be denoted by d;(n;), i.e., di(ni) = (zi1,...,Zin;). We a.lso let n =
(n1y...ynm) and d(n) = (di(n1),...,dn(nm)), 8 = (8,,...,0,) . Given
di(n;), @; follows a posterior density gin, (8:|di(n;)) with respect to the
o-finite measure A;(+) where

Gio(8:) f(ziny -, Zin;|8:) _ 9i0(8.:) [T5%, flzi;; )
f(zil yery Iin.) f(zﬂ’ zm.)

Define g =g (:|d(n)) = (g1n,(|d1(n1)), ..., gmnm (-|dm(nm))) . Given di(ny),
the marginal distribution of a future observation from population II; is

giny (8]di(ni)) = (3)

flatd(n)) = [ Flf:)oin @l nN(d82). (4

We also define di(ni) = (zi1,...,%in,) to denote some initial sample from
population II; and think of the prior densities gio(@1,...,6;,) as being
determined by this initial sampling. Given d;(n;) , if we decide to take a
sample of size k; from population II; then we will observe the sample
Xini+1 = Ting 41y Kini42 = Ting42y + + « y Xinj+k, = Tin;+k; - In what follows it will
be convenient to replace k; by v; = n;+k; ,i.e, v; is the total sample from
population II;, after we have taken an additional sample of size v; —n; from
population II;. If we take no new sample then v; = n;. Given d;(n;) , before
we take the additional v; —n; “future” observations X;; j=n;+1,...,y



202 Z. GOVINDARAJULU AND M. N. KATEHAKIS

the X{;s are random variables with marginal densities f(z|di(n;)) given by

(4) . We introduce the notation D;(v;,di(n;)) = (di(n;), Xin;41, .- -, X, ) and
D(y,d) = (Di(vi, di(ni)) )i=1,...m -

In this Bayesian framework,
ik = Oia(di(ni)) = By, (0i) = E(ux|di(ns)). (5)

is a reasonable (Bayes) estimate for 6;x, given the sample d;(n;) . The Bayes
risk associated with the square error loss for 0; is given by

r(di(n:)) = o*(Bildi(ni)) = E((0ix — 0ix)?|di(ns)). (6)

Thus, the Bayes estimate for A(p) = h(61y,...,0m1) is

T(d(n)) = Y wiba(di(ni) = ) wil(8aldi(ni)), (7)

1=1 =1
with corresponding risk

m

r(d(n)) = Y wir(di(ni) = Y wlE((0i — 6a)|di(ni)). (8)

=1 =1

Furthermore, we assume that there is a sampling cost associated with popula-
tion II; which is given by the functions ¢;(k;). We will consider the following
special cases

ci(ki) = aiob(k:), (9)
c,-(k;) = k.' (10)
where in (9) é6(k) =0for k=0and (k) =1for k> 0; a; denotesa

“setup” cost associated with population II; . Of course (10) is a special case
of (9).

We can now state the allocation problem. The aim is to specify an
allocation policy to minimize

K m
R(r) = By, (3> ailvi) + Lr(d(zx)), (11)

t=1 i=l
subject to

K m
Ezc;(v;:) < co. (12)

t=1 i=1
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In (11) L is a known constant and an allocation policy is a rule of the form:
= ((M1yeeesVm1)yeey (Koo oy (VmK)) = (go, ..,V ); where v is the
sample size “up to” which we sample at stage t, from population II; given
the data d(v,_,).

We will refer to problem (11), (12) as problem (P;) while the problem
of minimizing the risk R(w) without any constraint will be referred to as
problem (F).

In parametric models the posterior densities gin,(:) = gin, (0;|di(n;))
are uniquely determined by a set of sufficient statistics and the known priors
gio - In this situation we will assume that the data d;(n;) = (zi1,...,Zin;)
from population II; is represented in terms of the sufficient statistics but
we keep the notation d;(n;) . For the cases under consideration we have the
following.

CASE 1: We have X;|0; ~ B(0;), where 0; are independent random
variables, 0; ~ Beta(a;,b;); a;, b being known constants and X; ~
B(a;/(a; + b)) . The posterior distribution of #; given d;(n;) is Beta with
parameters: a; + Sin,, b; + fin,, Wwhere s;,, = Z;-'_',:l zi; and  fin, = n; — Sin, ,
i.e., di(n;) = (ni,3in,) is sufficient for 6.

CASE 2: We have X;|0; ~ N(ui,0?), 0; = (pi,0?). Convenient forms
of prior distributions for @; are obtained if we assume independent priors for
pi and o? of the form: p; ~ N(pio,0%) and o072 ~ I'(zi0/2,mio/s) , where
Bio , Oh, 2io/2, mi/s, are known constants. The posterior distributions
of u; and o7? given di(n;) can be computed (cf. Box and Tiao (1973)).
In particular, .

Min,;

o7 di(ni) ~ T(5 =), (13)

where zin, = zio+ 3055, (Zij — Zin))? ) Ting = 2 jmy Tij/Miy Min, = (Mio+1ni —
1). In this case di(n;) = (n;, zin, ) is sufficient for o? and d;(n;) = (ni, Zin,, Zin;)
is sufficient for (ui,0?) = (05, 0:).

3. OPTIMALITY EQUATIONS.

The basic idea underlying the derivation of the dynamic programming
optimality equations is the fact that for any allocation, R(7) is the sum of
two cost factors. The first is the cost associated with the initial decision and
the second is the cost associated with the remaining decisions. This can be
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seen from the fact that R(7) may be computed recursively as follows.

K m

R(r) = E()_) (i) + Lr(d(vx))ld(no))

t=1 1=1

K m
B(--(BQY_ Y elvi) + Lr(d(v x))ld(uk), -, d(1o)))

t=1 =1

= B alv)ldno) + E(E(Y a(valldes), dng))) + -

=1 =1
+E(-+ (EQY eivix) + Lr(d(vx))|d(k), - .- (o)) (14)
i=1
Thus, the dynamic programming equations are

o(K +1,¢,d) = Lr(d), (15)
v(ted) = min {U(t,cdy)}, (16)

for ceC,deDy, t=K+1,...,1, where,

Ut,dyn) = Y ci(vi=—m)

=1

+E(v(t+1,c— ZC.'(V.' - n;), D(v,d)|d(v,-,) = d(n))).
N (17)

and we use the notation: v; = vy, ni=vy_. C, D, t=K+1,K,...,,1
are the sets of all possible values of ¢, d, at stage ¢, and ¢ is the remaining
cost that can be allocated in stages ¢,t + 1,...,K. The sets of allowable
actions A(c,d), are determined by the current data and the constraints as
follows. A(c,d) = {(k1,...,km) : ki 2n;, C(c,u,n) 20, k; integers}.

Remark 1. In the case of zero set up costs and linear sampling costs, i.e.,
(9) with @ = 0, there is no need to keep track of the “remaining cost” since
this information is now contained in the data d(n) in terms of the sample
size vector n . Indeed, given that v;., = n;, the remaining cost at stage ¢ is
equal to ¢g — Y v, cin;. Hence the following simplification to the functional
equations is possible:

v(K+1,d) = Lr(d), (18)
v(t,d) min {U(t,d, v)}, (19)

vEA(cd)
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for ceC, d€Dyt=K+1,...,1, where
Ut,d,n) = Y ci(vi = ni) + Ey (v(t+ 1, D(x, d)|d(x,_y) = d(n)) . (20)
1=1

and A(d) = {(k1,...,kn): ki 2 n;, Cle,k,n) >0, ki 2 n;, k;integers}.

For case 1 the functional equations take the form:

2 (ai+si)(bi +ni— si)

v(K+1,¢,d) = LZw

. Y(ai+ b+ 8)%(ai + bi +ni+ 1)’ (21)
v(t,d) = ZgggQ{U(t,d,z)}, (22)
for c€C, deDyt=K+1,...,1, where,
Ult,c,d,v) = zm: ci(vi —ni) + i Z-fo p(yilvi,mi) - |
i=1 =1 y=
w4 le=Y ali—nnGrd)]  (@3)

=1

and d = ((s1,71),-.+,(8m,7m)), Gy, 1, d) = ((s1+¥1,1),- -+, (Sm+Ymy Vm))

p(yiluir i) = (,,,. - "f) (a5 + i)W (b + ny — )=

: (24
vi (@i + b + ng + D)nm (24)

y.-=0,1,...,u,-—n,- .

In (21), (24) we have used the fact that given the data, d; = (s;,n;)
from population II;, 377" X;; follows a binomial distribution with pa-
rameters v; —n; , (a; + s;)/(a; + b; + n;). Note also that C; = [0,¢] and
Dy = {(kyy. . km) : Yo ci(ki) <co, ki>0, integers} .

Equations (21), (22) can be solved numerically for moderate values of
m and c¢o. Analogous equations can be derived for case 2. However we will
do this in the next section where we derive dynamic programming equations
using approximations for the posteriors.

We end this section by pointing out the relation between equations (15),
(16) and the optimality equations for the “inventory problem” (cf. Ross (1970)
p. 169). First, consider problem (F). It decomposes into m independent
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subproblems associated with each population. For a typical subproblem the
optimality equations can be written as follows.

v(K+1,¢,d) = Lr(d), (25)
v(t,c,d) = ur&ia){c;(u —n)+ E, (v(t+ 1, D(v,d))|d(vi-1) = d)}
== r‘gi'x‘l{H,(u,n)} A=K K-1,...,1, (26)

where vy = ng is given. For notational simplicity we have dropped the
subscript ¢ since we are dealing with a fixed subproblem. Recall that a
function f(z) is called a-convex in z if a+ f(z+u)— f(z) 2 udf(z)/dx for
all u and z. Under the appropriate assumptions that insure the a - convexity
of Hi(v,n)in v (cf. Ross(1970) p. 173) and if we drop the restriction that
v must be an integer, the following proposition holds.

Proposition 1. For problem (F,) , under the assumption of a; - convexity
of the functions Hy(v,n) in v , and if we allow non-integer values for
the sample sizes v; , then an optimal allocation policy has the following
form. There exist numbers qi = qie(Vit-1,d;_,)y, Qit = Qir(Vit-1,d,_,),
t=1,...,K with ¢u < Qi such that the optimal sample (up to) sizes at
stage t are given by

0 _ 0/, _ Qi I Vi < it
Vit = “(y‘t-l,‘_i-‘-l) - {Vit—h i{ Vit-1 > qit, (27)

where Q;: is the point at which the function
f!.-,(v,n) = Hiy(v,n) — ajb(v — n)
attains its minimum value and

Gie =sup (v < Qie : Ha(vyn) 2 HielQityn) + aio).

For the case with no set up cost the following simplification to Propo-
sition 1 is possible.

Proposition 2. For problem (F,) , under the assumptions that insure the
convexity of Hy(v,n) in v, there exist numbers Qi = Qi(Vit—1,d;_,),
t=1,...,K , with min,>o{Hi(v,n)} = H:(Qi:,n) such that the optimal (up
to) sample sizes at stage t are given by

ity i{ Vit— S ity
y? = S(V.'g-l,i:-l) = {?“t_h if u,-:_: > 8-: (28)
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The problem of computing the numbers g¢;;, Qi remains; see Whittle (1983)
and references given there. Problem (P,) is related to the multi-product
inventory problem.

4. APPROXIMATIONS ONE-STAGE LOOK AHEAD RULES.

In this section we use approximations for the posteriors to derive asymp-
totically optimal one stage rules. We suppose that there is no set up cost. The
approximations are valid for large sample sizes as is often the case in survey
sampling. We start with the following proposition (cf. Lindley (1970) p.132).

Proposition 3.  Suppose that an unknown random vector of parameters
0 =(6,,...,0,) with prior density function g¢(,,...,0;) is such that given
@ , an observable random variable X has conditional density f(z|0) of
known form. If a sample z of size n is taken then, provided that ¢(8) #0 ,
V@ , the joint posterior of 8§ is approximately multivariate normal N(Q, ),
where 0 = 8(z) is the m.Le. of 8 given the sample,

o [9*U(z]8)
= l"(39.-349,)_=é (29)

and 1(z|0) is the log likelihood, i.e., 1(z|8) = log L(z|0) = }77_, log f(z;).
Using improper (or “uniform”) priors (c.f., Box and Tiao (1973)) one obtains
the following corollaries of the above proposition.

Corollary 1. For case 1, where X|0 ~ B(0) , the posterior distribution
of @ given d(n) = (8a,n), is approximately N(sn/n,s,(n — s,)/n®), where

= 2i=1%i

Corollary 2. For case 2, where X|§ ~ N(u,0?), the posterior distribu-
tion of 0 = (0,,0;) (6, = [1,02 = 2) given d(n) = (Zn,2n,n), where
Tn= ) 001 Ti/n, za = Y5, (2 —Z,)* is such that p, o® are approxi-
mately independent and normally distributed r.v.s with p ~ N(Zn,z2,/n?) =
N(Zn,62/n), and o? ~ N(2,/n,222/n%) = N(&:,2(&:)2/n).

In the following lemmas we use the above corollaries together with the
fact that the pertinent sequences of random variables can be shown to be
uniformly integrable and therefore convergence in distribution implies conver-
gence of moments (see Serfling (1980) p. 14). Also, we write the “=" sign
with the understanding that the expectations are computed with respect to
the asymptotically normal posteriors given by Proposition 3.
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Lemma 1. Under the assumptions of Proposmon 3, for a typical population
as in case 1 we have:
S, Sn
B(=omm) = = (30)
S S 8 s
(241 = 22)|(s,, = S5 -2
E(=- (1= )(smn)) = (1= =) +o(n™), (31)
where S, =3 z; and v 2> n.
Proof. First notice that for v > n |
v=-n
S.,=s,‘+ZX,.+,-=s,,+Y (32)
=1

where X,.;|(0, (sn,n)) areii.d B(#) and Y is a binomial random variable
with parameters (¥ —n) and 6. Hence,

8p + (v ~ n)0'
v

s,,-l-Y

E(%w’ (3'!’")) = E( |0 (sm )) = (33)

where by Corollary 1, § ~ N(s,/n,s.(n — s,)/n®) , the result follows. For
(31) we have

B0, (smm) = B(C2EL 10, (3n,m)

1
e ',,_2E(3: +2s2Y + Y20, (sn,7))

_ ;17(33, + 252 (v — n)0 + (v — n)B(1 — B)(v — n)?6%)
(34)

the result follows again by Corollary 1.

Lemma 2. Under the assumptions of Proposition 3, for a typical population
as in case 2 we have

B2z m) = 22 (35)

Proof. First notice that for v > n |

v—=n-—1

=z, + E Un; (36)

1=0
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where +i
n+j _
nj = m_l(x"*”’ ~ Xa4i)?,
Xony; = Xn + Xupr &0+ Xogs = 5 Xo ’

n+j
and Xn4;|(p, 0% (Zn,2a,n)) are i.i.d. N(p,0?).

Let Y; = X, — p. Then, Xntier — Xn+j = Y441 — _,,4.,- and

nYn+Yn+l+"'+yn+j
n+j ’

(37)

Yy+j+l = Tn4j = Ingjer —

where Yo4;|(4,0%, (Zn, 2n,n)) ~ N(0,0?) . It follows that

% - n v o2 J
(X'H-.H-l - Xn+j)|([l,02, Tny zn)) ~ N(n +jyma (1 + (n +J')2))’ (38)
for =0,...,v —n—1. Hence,
- +) o -
E(Uni|(py0%,%ny20)) = n:.j-:.l E((Xn+i+1 = Xnsi)'|(1, 0%, Zn,y 20))
n+j 2 J n o2, _ 2
= 1 n" 39

Now it is easy to complete the proof of (35) since by Corollary 2 we have that
E(0®|(zn,n)) = 2a/n and E((Zn = p)*|(Zn,2n,n)) = za/n’.

We can now prove the following.

Proposition 4.  Large sample size one stage look ahead allocation rules,
given current data d(n;) from population Il;, can be determined by computing
the values of v; , i =1,...,m, that solve the following optimization problem.

Minimize
P;
Vi - 40
Dt (10)
subject to
Vi 2 n; (41)

where p? is given by (42) below for case 1 and by (43) for case 2.

2 = L2y Sim
pi = Lw; n: (1 mal (42)
= Lut ™, (43)
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Proof. To compute one stage allocation rules we use the dynamic program-
ming optimality equations with K =1 . For case 1 we have

v(2,d) = szza((e -0.)%d;) = Lf:w,?s‘"'(”‘;""-), (44)

=1 t=] s

v(1,d) = min{) a(vi—n)+ B, ((v(2, D(,n)|d)}

m

= mm{Zc.(u.—n. + E,,,, (LZ 2 Sin (mi — S"")|d)}

=1 '

= 2‘1)12{2 v + Z an; + o(n7?)}, (45)

=1 1=1

where the last equality follows from Lemma 1 and ((44)).
Similarly for case 2 we have.

v(2,d) = sz r.(d)-LEw’E‘,m (04 - 62)%|dy)

=1

Zin,
= LZ 2n,, (46)

where d; = (zin;,ni) , .1 = I, = E(0;\d;) , and the last equation follows
from Lemma 2. Now

v(1,d)

I
E;J
D
~~~
S
I
3
+
&3
2
f—?
=
S
~~
<
g
=
S
——

f
ivE.
=

-
sE[V]s 0
o
<
|
.?
+
5
3
~

M

g
E
=

vion;
= ;p;g{zcmz%-zqm}, (47)
= = =1 ' i=1

where the last equality follows from Lemma 2 and (46).

A simple algorithm for computing optimal solutions to problem (40),
(41) when we drop the constraint that the v;’s take only integer values is
given by Proposition 5 and subsequent remarks below. Consider the problem:
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minimize

b 2
f(zl,...,z,);§z;+’z’—:, (48)
subject to
Z T S Co, (49)
=1 *
Z; 2 n.-,i:l,...,m. (50)

where p? ,co,n;, are fixed constants.
Given a subset G of {1,...,m} we define n(G) =3..;ni, p(G) =
2 icg Pi - We have the following.

Proposition 5.  The optimal solution z° = (z9,...,2%) of the above

minimization problem can be determined by the following procedure.

1. Let M ={1,...,m}. Define the variables y; by

{Pa if 30, p; < co;
Yi=

;’}(Zi% if 2;';1 p; > ¢o. (51)

2. Let G={i:yi<m}. If G=0,set z}=y;, Vj€E M, stop.

3. If G# then,

(a) set z)=n), VjeQ,
(b) compute n(G) , p(G), and
(c) set y; = (co —n(G))pi/p(M —G) , for j €M -G.
4. Set M=M~-G, G={ieM : y;<n;}, gotostep?2.

Proof. We outline the proof for the case in which m = 2 . Consider the
Lagrangian

2 2 2 2
L(zy,z2,u) = Z z; + i’—" + “(Z T —C) = Z Li(z;,u) — ucg, (52)

=1 =1 =1

where

Li(zi,u) =z; + Z—? + uz; (53)
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Let z!(u) = p;/V/1+ u. It is easy to see that for fixed u, we have:

min Li(zi,u) = Li(?(u), u) (54)
where 1( )it 1( '>
0 zH(u) if z!(u) 2> ny
= { n if z}(u) < n;. (55)

Now from the complementary slackness conditions (c.f. Lasdon (1970), p. 396)
we have that the solution to the optimization problem of egs. (48) to (50) is
given by z?(u®) where u® is the solution of

W (22(s°) = co) = 0. (56)
The proof can be completed by considering various cases. The proof for the

general case is easy to complete by induction on m.

Remark 2. It is easy to show that if we replace f(-) in (48) by f(z)
= Yo, p}/zi, subject to (49), (50), then the only modification that is needed
in Proposition 5 , is to replace the y;’s in step 1 above by y; = pico/p(M).

The following variation of problem (48)-(50)

minimize ~ )
— P
f(z;,...,zm)—§c,x.+Lz‘, (57)
subject to
m
Doz < o (58)
im)}
Gy 2 ni,i=1,...,m, (59)

can be put in the form of the original problem if we make the transformation
% = ¢z, pl = Leley.

5. SIMULATIONS.

The effectiveness of the one - stage look ahead rule was evaluated with
a series of Monte Carlo simulations, for cases 1 and 2. In each case we used
two populations. Furthermore, we imposed the additional restriction that
every time a sample was taken from a population its size could not exceed a
maximum “batch” size value m. We call this procedure the batch sequential
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procedure. Its performance was always found to be very good, i.e., it out-
performed (in terms achieving lower variance) the simple allocation policy that
chooses sample sizes by distributing uniformly the available sampling “budget”
and for the case of normal populations, it achieved sample sizes close to those
attainable by the optimal allocation for known variances.

For the case of Bernoulli populations, simulations were done for many
possible choices for the parameters. In the appendix we present typical sim-
ulation results for II, taken to be B(0.5) with sampling cost ¢; =1, w; = 1
and II, taken to be B(#;) for 6, = 0.1,0.5,0.9 , ¢; = 0.5,1,10, w; = 1,2,10,
m = 10,40 and ¢o = 200. We performed 100 independent simulation runs.
The results are summarized in Tables 1 to 3, where we denote by N¥ , i = 1,2,
the sample sizes prescribed by the uniform allocation of cost procedure, by N;
the average total sample sizes (over the 100 simulation runs) prescribed by the
proposed batch sequential allocation procedure, by N! | N™ the minimum and
maximum sample sizes (over the 100 simulation runs) prescribed by the batch
sequential allocation procedure, by b the average number of times (over the
100 simulation runs) that a sample from either population was taken by the
batch sequential allocation procedure. Finally, the variable Dsu is the ratio of
the estimated values of standard deviation of the estimator for the proposed
procedure to the sum of the estimated values of the proposed procedure and
that of the uniform allocation of budget procedure.

For example, Table 1 summarizes the results obtained when the total
budget is co = 200, the population sampling costs are respectively: ¢, = 1,
¢ = 0.5, the parameter of the first population is equal to 8, = 0.5 and the first
data row corresponds to a “batch size” of m = 10, parameter of the second
population equal to §; = 0.1, etc. In Table 2 the only difference is that we
have taken ¢c; = 1; similarly, in Table 3 we have taken ¢; = 10.

For the case of Normal populations, simulations were done for many
possible choices for the parameters. In the appendix we present typical sim-
ulation results for II; taken to be N(0,1) with sampling cost ¢; = 1, w; =
and II; taken to be N(uq,03), for u; = 0,2,10, 027 = 1,2,10, ¢; = 0.5,1,10,
wy = 1,2,10, m = 20, and ¢ = 200. We also performed 100 independent simu-
lation runs. The results are summarized in Tables 4, 5, 6, where we use similar
notafion with that of Tables 1 to 3. In addition we include two columns for the
corresponding optimal sample sizes N, N;, for the case of known variances.
The variable Dsu is the ratio of the estimated values of standard deviation of
the estimator for the proposed procedure to the sum of the estimated values
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of the proposed procedure and that of the uniform allocation of budget pro-

cedure.

Table 4 summarizes the simulation results obtained when the total bud-
get is ¢ = 200, the population sampling costs are respectively: ¢, = 1,
c2 = 0.5, the parameters of the first population are equal to uy, = 0, o7 = 1,
the first data row corresponds to a “batch size” of m = 10, and the parameters
of the second population are equal to u; = 0, 03 = 1. In Table 5 we have taken
¢; = 1, and in Table 6 we have taken ¢, = 10.
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Appendix
Table 1: Binomial populations, ¢; = 1, ¢; = .5, ¢ = 200.
Param Un. Aloc. Batch Sequential Allocation.
m, 6| N Ny| N, N, N Np N, NP b w,|DSU
10 0.1 100 200 (140 122 130 152 96 140 143 1| 0.46
10 0.5 100 200|117 166 116 119 162 168 17.0 1| 0.42
10 0.9 | 100 200|140 120 131 158 84 138 144 1| 033
40 0.1 ]f100 200139 122 131 158 84 138 5.0 1| 0.35
40 0.5} 100 200|117 166 115 119 162 170 5.0 1| 0.37
40 0.9 u 100 200 | 140 120 130 162 74 140 5.0 1| 0.31
10 0.1 100 200|110 180 97 129 142 206 184 2| 0.39
10 0.5) 100 200 (| 82 235 80 84 232 240 239 2| 041
10 09| 9 199|110 180 99 125 150 202 183 2| 0.28
40 0.1 99 199|109 182 99 124 152 202 53 2| 0.34
40 051100 200( 82 235 81 8 230 238 6.0 2| 0.39
40 091100 200 (110 181 98 128 144 204 53 2| 0.27
10 0.1 100 200| 41 317 33 71 258 334 319 10| 0.4l
10 05100 200 24 351 19 27 346 362 35.1 10| 045
10 0.9 100 200 | 41 317 33 53 294 334 31.9 10| 0.27
40 0.1{100 200 40 319 34 62 276 332 85 10| 0.27
40 05| 100 200| 24 352 24 25 350 352 9.0 10| 041
40 0.9 " 99 199 | 41 318 35 61 278 330 84 10| 0.25
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Table 2: Binomial populations, ¢; = 1, ¢; = 1, ¢o = 200.

Param. | Un. Alec. Batch Sequential Allocation.

m, 6| N RNe|lRN, N, N NP N NP b w| DSU
2

10 0.1((100 100124 76 10 154 46 8 126 1} 0.34
10 05§ 99 99 |100 100 98 103 97 101 10.2 1| 0.37
10 09100 100|124 76 111 153 47 89 127 1| 0.30
40 0.1} 99 997123 77 110 153 47 S0 50 1| 0.33
40 05100 100 (100 100 95 104 96 105 5.0 1} 037
40 09 99 99122 77 112 143 57 88 5.0 1| 031
10 0.1 {100 100| 91 109 76 108 92 124 11.5 2| 0.27
10 051|100 100| 66 134 63 68 132 137 139 2| 0.39
10 09100 100| 9 110 78 108 92 122 115 2| 0.26
40 0.1 100 100| 8 111 79 114 8 121 5.0 2| 0.33
40 05 (100 100 66 134 62 72 128 138 5.0 2| 0.40
40 05| 100 100{ 9 110 78 114 8 122 5.0 2| 0.26

10 0.1 100 100 31 169 25 49 151 175 17.1 10| 0.31
10 05100 100 | 18 182 12 24 176 188 18.1 10| 0.40
10 091100 100 | 31 169 23 52 148 177 17.1 10| 0.27
40 0.1|100 100| 30 170 23 48 152 177 5.1 10| 0.28
40 0.5( 100 100 | 18 182 18 20 180 182 5.0 10| 0.40
40 09100 100| 29 171 22 43 157 178 51 10| 0.24
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Table 3: Binomial populations, ¢; = 1, ¢; = 10, ¢ = 200.
Param. Un. Aloc. Batch Sequential Allocation.
m, 6| N Ny|R, N, N NP N NP b w |DSU
10 0.1 96 9162 13 50 72 12 15 6.3 1| 034
10 05| 98 9148 15 40 55 14 16 5.1 1| 0.38
10 09 95 9161 14 50 72 12 15 6.2 1| 0.28
40 0.1 | 100 1015 15 5 50 15 15 50 1| 0.32
40 0.5 (| 99 9148 15 45 S0 15 15 50 1| 0.36
40 0.9 (| 100 105 15 50 50 15 15 5.0 11| 0.30
10 0.1 99 9137 16 27 48 15 17 50 2| 0.33
10 05| 97 9127 17 25 30 17 17 50 2| 0.36
10 0.9 99 9137 16 27 48 15 17 5.0 2 || 0.27
40 0.1 |[ 100 1013 17 30 30 17 17 50 2| 0.29
40 05 98 9|27 17 27 30 17 17 5.0 0.38
40 0.9 100 101 30 17 28 30 17 17 5.0 2| 0.30
10 0.1 98 9 9 19 6 12 18 19 5.0 10 (| 0.37
10 0.5 98 91 6 19 6 7 19 19 5.0 10| 0.39
10 09| 99 91 9 19 6 12 18 19 50 10| 0.31
40 0.1 98 9| 8 19 6 10 19 19 50 10| 0.38
40 05| 98 9 6 19 6 7 19 19 5.0 10| 0.21
40 09 99 9] 9 19 6 10 19 19 5.0 10 0.26
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Table 4: Normal populations, ¢; =1, ¢; = .5, ¢o = 200.

—

Param. | Un. Aloc. Batch Sequential Allocation, m=20 Known o?

e, d‘-} ﬁ'f ﬂ; ﬂ; ﬂ: Nll NT Nig N'Z“ b wy NI N2 DSU
0 1| 100 200/ 117 165 107 127 146 186 8.8 1{117 164 | 0.50
0 2100 200|101 198 8 112 176 228 103 1100 200 0.5
0 10100 200 63 275 47 77 246 306 14.2 1| 61 276 | 046}
2 11100 200117 166 107 127 146 184 89 11117 164 | 0.49
2 2100 200|100 200 88 115 170 224 104 11100 200/ 0.50
2 110|100 200} 63 274 50 77 246 300 l4.1 1| 61 276 | 0.46

10 11100 200104 192 97 112 174 206 104 11117 164 | 0.50
10 20100 200 93 214 83 102 196 234 114 11100 200 0.49
10 10100 200 60 281 46 74 252 308 145 1] 61 276 | 0.46
1/100 200| 8 231 68 98 204 264 120 2 82 234 | 049
21100 200| 68 264 56 81 238 288 13.7 2| 66 266 | 047
10100 200 | 38 323 28 48 304 344 166 2] 36 326 042

2 11100 200| 8 237 69 97 206 262 123 2| 82 234 | 049
2 2100 200] 67 266 56 79 242 288 13.8 21 66 266 | 0.47
2 10]100 20| 38 323 28 52 296 344 166 21 36 326 04l
10 1100 200| 71 257 60 81 236 280 13.5 82 234 | 046
10 2/(100 200 60 279 48 72 256 304 1435 66 266 | 0.44
10 10100 200 35 330 25 45 310 350 17.0 36 326 | 041
0 1100 200 26 348 21 41 318 358 178 10| 24 350 0.38
0 2}100 200| 22 357 21 31 338 358 18.0 10 18 362 | 0.38
0 10100 200( 21 358 21 21 358 358 180 10 8 382 0.37
2 1]100 200] 24 352 21 34 332 358 179 10| 24 350 | 0.38
2 921100 20 21 357 21 27 346 358 180 10 18 362 | 0.38
10 ] 100 200 21 358 21 21 358 358 180 10 8 382 0.36

10 11100 200] 21 357 21 26 348 358 18.0 10| 24 350 | 0.33
10 2|100 200| 21 358 21 21 358 358 180 10 18 362 0.35
10 10]100 200 21 358 21 21 358 358 18.0 10 8 382 | 0.36
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Table 5: Normal populations, ¢; = 1, ¢; = 1, ¢o = 200.

219

Param. | Un. Aloc. Batch Sequential Allocation, m=20 Known o7

B2, d‘g ﬂi’ ﬂ;‘ .ﬁ: ﬂg N'; N'i" N% N;‘ b w2 N; Nz DSU
0 1100 100|100 100 89 111 8 111 6.1 11100 100 | 0.50
0 2/|100 100| 83 117 69 94 106 131 64 1] 82 117 | 0.49
0 10100 100| 50 150 37 62 138 163 8.0 1| 48 151 0.44
2 1{100 100| 99 101 84 116 84 116 6.1 1100 100 | 0.50
2 2/|100 100| 83 117 69 97 103 131 6.4 1| 82 117 | 049
2 10100 100| 48 152 32 61 139 168 8.0 1| 48 151 | 0.44
10 1[100 100| 8 119 68 89 111 131 7.1 1{100 100 | 0.47
10 2100 100( 72 128 59 83 117 141 74 1| 82 117 | 0.46
10 10 {100 100| 45 155 34 55 145 166 8.1 1| 48 151 | 043
0 1[100 100| 67 133 53 81 119 147 7.1 2| 66 133 | 047
0 2(100 100| 54 146 41 66 134 159 7.6 2| 52 147 | 0.45
0 10[100 100 29 171 21 41 159 179 89 2 27 172 0.39
2 1|100 100| 66 134 54 "8 122 145 7.2 2| 66 133 | 047
2 2|100 100| 52 148 42 65 135 188 7.9 2| 52 147 | 044
2 100|100 100 28 172 21 41 159 179 9.0 2 21 172 040
10 1]100 100| 52 148 41 61 139 158 8.4 2| 66 133 | 0.39
10 2100 100| 43 157 30 52 147 170 85 2| 52 147 | 0.39
10 10100 100| 25 175 21 33 167 179 9.0 21 27 172/ 038
1/100 100 20 180 18 33 167 182 96 10| 18 181 | 0.38
21100 100| 18 182 18 20 180 182 10.0 10| 13 186 | 0.36
10100 100| 18 182 18 18 182 182 100 10 6 193 | 0.37

2 1/100 1100 19 181 18 23 177 182 9.7 10| 18 181 | 0.38
2 2]100 100| 18 182 18 25 175 182 100 10 13 185 | 0.36
2 10[100 100, 18 182 18 18 182 182 100 10 6 193 | 0.36
10 1/100 100 18 182 18 18 181 182 100 10 18 181 | 0.30
10 2(100 100| 18 182 18 18 182 182 10.0 10 13 186 | 0.31
10 10100 100| 18 182 18 18 182 182 100 10| 6 193 0.35
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Table 6: Normal populations, ¢; = 1, ¢; = 10, ¢ = 200.

Param. | Un. Aloc. Batch Sequential Allocation, m=20 Known o7

pa, o3 [Ny Ny [N, N, N NP N NP b wy|N, N DSU
0 100 10117 15 31 50 15 17 5.0 1| 48 15| 0.44
0 2| 100 1039 16 23 350 15 18 5.0 1] 36 16 | 0.43
0 10| 100 10 23 18 21 41 16 18 5.0 1] 18 18 | 0.39
2 100 10 44 16 31 S50 15 17 5.0 1| 48 15 ] 0.42
2 2 | 100 10 36 16 24 50 15 18 5.0 1| 36 16 | 041
2 10| 100 10 23 18 21 38 16 18 5.0 1] 18 18 | 0.39
10 11100 10 21 18 21 24 18 18 5.0 1| 48 15| 0.30
10 2| 100 10 21 18 21 22 18 18 5.0 1| 36 16 | 0.30
10 10| 100 10] 21 18 21 21 18 18 5.0 1] 18 18 | 0.33
0 11100 101 27 17 21 30 17 18 5.0 2 2 17 | 0.42
0 21| 100 10| 23 18 21 30 17 18 5.0 21 20 18 | 0.42
0 101100 10 21 18 21 21 18 18 5.0 2 9 19 ] 041
2 11100 101 25 18 21 30 17 18 5.0 21 27 17 | 0.38
2 21100 10 22 18 21 30 17 18 5.0 2| 20 18 | 0.40
2 101100 10] 21 18 21 21 18 18 5.0 2 9 19 | 041
10 11100 101 21 18 21 21 18 18 5.0 2] 27 17 | 0.29
10 21100 10 21 18 21 21 18 18 5.0 2] 20 18 | 0.29
10 10 | 100 10| 21 18 21 21 18 18 5.0 2 9 19 | 0.33
0 98 9 6 19 6 10 19 19 5.0 10 6 19| 0.32
0 2| 98 9 6 19 6 8§ 19 19 5.0 10 4 20 | 0.35
0 10 98 9 6 19 6 6 19 19 5.0 10 1 20 0.35
2 98 9 6 19 6 7 19 19 5.0 10 6 19 | 0.30
2 2| 98 9 6 19 6 6 19 19 5.0 10 4 20 | 0.33
2 10| 98 9 6 19 6 6 19 19 5.0 10 1 20 | 0.34
10 1 98 9 6 19 6 6 19 19 50 10 6 19 ) 0.24
10 2 98 9 6 19 6 6 19 19 5.0 10 4 20| 0.24
10 10 98 9 6 19 6 6 19 19 50 10 1 20 | 0.27
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