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Abstract 
We consider the problem of sequential control for a 
finite state and action Markovian Decision Process 
with incomplete information regarding the transition 
probabilities P E @ . Under suitable irreducibility as- 
sumptions for @, we construct adaptive policies that 
maximize the rate of convergence of realized rewards 
to that of the optimal (non adaptive) policy under 
complete information. These adaptive policies are 
specified via an easily computable index function, of 
states, controls and statistics, so that one takes a con- 
trol with the largest index value in the current state 
in every period. 

1. Introduction 
Consider a discrete time, Markovian Decision Pro- 
cess with state space S = {1,2 , .  . . , s } ,  finite ac- 
tion space A = U zES:A(x), where A(z )  is the set 
of admissible actions in state x, and transition law 
P = bzy(u)]z,yE~,aE~(m). The transition probability 
vectors p z ( u )  are unknown and belong to  known 
sets O ( X ,  U ) .  Let i j  = { P  s.t. pzy(u) E O ( X ,  u )  1. Un- 
der suitable irreducibility assumptions for p ,  we con- 
struct a class CR of adaptive policies that maximize 
the rate of convergehce of realized rewards to that of 
the optimal (non adaptive) policy under complete in- 
formation. These adaptive policies are specified via 
an easily computable index function, of states, con- 
trols and statistics, so that one takes a control with 
the largest index value in the current state in every 
period. 

The ideas involved in this paper represent gener- 
alizations of the theory developed in [2], [3], [SI and 
[lo]. Related work is that of [ 6 ] ,  [12], [I] and [9]. 
Main differences of our work from the later are: i) 
we use the Markovian structure of the problem (i.e., 
an “open box” methodology ) and ii) optimal policies 
are specified via easily computable indices so that one 
takes (and thus samples) actions, or controls, with the 
largest index value in every current state and period, 
instead of sampling policies (from the class of all de- 
terministic policies) at the end of cycles. 
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For computational issues for MDPs see [ll], [ 5 ] ,  
[13] and references therein. 

The paper is organized as follows. In section 2 we 
formulate the problem of control of a Markov process 
under side constraints. In section 3 we present the 
index policies and in section 4 we give initial com- 
putation results for a queuing control problem first 
introduced in the context of optimal replacement in 
~41. 

2. The Partial Information Model 
The statistical framework used in the sequel is as fol- 
lows. 
(a) For any fixed state-action pair (%,U) such 

that U E A ( e ) ,  let the discrete random variable 
Y j ( z , u )  E S denote the state visited immediately 
after the jth occurrence of (x, U ) .  From the Markov 
property, % ( x , u ) , j  = 1 , 2 , .  . . are i.i.d. with distri- 
bution pz(u) .  

(b) Let the random variables X t ,  At, t = 0 ,1 , .  . . 
denote respectively the state of the process and the 
action taken in period t. A history W k  is any feasible 
sequence of states and actions during the first k time 
periods, W k  = 20, U o ,  . . .Xk-i, U k - 1 ,  Xk, such that 
ut E A ( z , ) , t  = 0 , .  . .,IC - 1. ( Q ( ’ ) ) ,  F ( k ) ) ,  1 5 
k 5 03 denote the sample space of histories W k ,  
where is the set of all histories W k  and F ( k )  
the a-field generated by Q k .  Events, defined on 2 f k )  
are denoted by capital letters. The complement of 
event B is denoted by B. 

A policy  R is defined as a sequence { r k }  of probabil- 
ity measures on A = U z E S  A ( x )  given w k ,  such that 
T s ( A ( X k ) l W k )  = 1, for all periods k 2 0 and histories 
w k .  It represents a generally randomized law of select- 
ing actions based on the entire observed history and 
the parameters of the problem. A policy ?r is adaptive 
if T k ( . I W k )  does not depend on knowledge of P. A 
policy T is statzonary Markov if T k ( . I W k )  = n o ( . l z k ) ,  

for all k , W k .  A policy ?T is deterministic if there ex- 
ist funct.ions f k  : s -+ A ,  k = 0 ,1 , .  . . , with f k ( z )  E 
A ( x ) ,  such that for all k and w k ,  ?rk({f(Xk)}lwk) = 1. 
In this case ?r is also denoted by {fk}. Let C denote 

Let 
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the set of all policies, and C M ,  CD the set of all sta- 
tionary Markov and stationary deterministic policies, 
respectively. 

Probability and expectation under transition law 
P ,  policy T E C and starting state GO will be denoted 
by P:bP, 
2.1. Unobservable auantities. 

i) Transition Law and Parameter Space. Let 
P = [ P m y ( a ) ] , , y E ~ , a E ~ ( z )  denote the unknown tran- 
sition law and let P denote the set of all such P . We 
make the following assumption. 
Assumption (A).  For all G E S, a E A ( z )  , the sets 
S+(G,U) = { y E S : pmy(a)  > 0 )  are independent 
of P ,  known an.d such that the transition matrices 
P ( f )  = [ P , Y ( f ( ~ ) ) ] m , y E ~ ,  are irreducible, for all poli- 
cies f E Co. 

be the subset of P which consists of the 
transition laws P satisfying (A).  In the sequel we 
take ? = &,,,) O(z, U ) ,  where 

Let 

Y E S  

P(Y) > 0 , V Y  E S + ( w ) ,  d Y )  = 0 , V Y  $! S+(z,a>I 

denotes the parameter space for the probability vec- 

ii) Performance Criteria subject to side con- 
straints. The performance of a policy T is char- 
acterized by a reward structure R = [T-(c,u),  G E 
S,u E A(%)] ,  and m distinct cost structures Ci = 
[ c ~ ( G , u ) ,  where 
T ( Z , U )  denotes the expected one step reward and 
c ~ ( G ,  U )  the expected one step cost corresponding to  
cost criterion i ,  for the state action pair (z, U ) .  

expected total reward during the first n transitions 
under policy T ,  and g z ( P )  = bn+m V , ” ~ P ( ~ ~ ) / n  
the expected average reward. Note that,  because of 
Assumption (A), gz (P )  is independent of the start- 
ing state G O .  

tor p,(a). 

c E S,a E A(s)] ,  i = 1,.  . . ,m,  

Let V ~ J ~ ( G : , )  = E:;P N-1 r ( X t ,  A t )  denote the 

Similarly, let 

N -  1 

denote the expected average cost for criterion i, i = 
1, . . . , m. 

The optimality criterion is maximization of the ex- 
pected average reward subject to  constraints on the 
expected average costs. For w E lRm let Cp(P,v) = 
{ T E C  : g : ( P ) < w i , i = l ,  ..., m}denote these tof  
feasible policies. 

A policy ?r* E c F ( P ,  v) is optimal if go“* ( P )  = 
g*(P, w), where g*(P, v) = sup{g$(P) : T E CF(P,  v)}. 

Since P is unknown, g*(P,v)  is an unobservable 
quantity. It represents the maximum expected av- 
erage reward (subject to  the constraints for the ex- 
pected average costs), tha t  can be attained “if the 
transition law P is known to the experimenter”. 

In the sequel vector v is considered known and 
fixed, and the dependence of all the problem quan- 
tities on v is not explicitly denoted. 

iii) Unobservable Linear Programming solu- 
tions. Let A = zES A(c)  denote the Cartesian 
product of the action sets. There is a one t o  one cor- 
respondence between the vectors in d and the sta- 
tionary and deterministic policies f E CO. 

For a collection { D ( z )  2 A ( z ) ,  G E S}, let 2, = n ,ES D ( z )  C A. For any D 2 A define the re- 
stricted problem ( P ,  D) as a markovian decision pro- 
cess with state space s, action sets { D ( z ) ,  z E s} 
and transition law equal t o  the restriction of P on 
V. There is a one to one correspondence between 
the vectors in V and the stationary and deterministic 
policies of the restricted problem ( P , D ) .  

For a restricted problem ( P , V ) ,  let L P ( P , D )  de- 
note the following linear programming problem with 
variables (T(z,u),  z E S,a E D(z ) ,  where S,, = 1 if 
z = y and 0 otherwise. 

Because of the first constraint, LP(P,  V) is always 
bounded. If it is also feasible, then let ( a ( z ,  a; P, D), 
z E S,a E D(y)) denote the optimal solution and 
O ( G ; P , D )  = { U  E D ( z )  : r ( z , a ; P , D )  > 0); let 
( y ( P , D ) ,  h(P,D) ,  A(P,D))  be the optimal dual so- 
lution, where h(P ,V)  = ( h ( z ; P , V ) ,  z E S ) ,  and 
A(P,D) = (Ai(P,V) , i  = 1,. . . , m). Also let a*(P)  = 
g ( P , A )  and (y*(P), h*(P) ,  A*(P)) = ( y ( P , A ) ,  
h (P,A) ,  A(P,d)) be the optimal primal and dual 
solutions, respectively, of the unrestricted problem 
( P ,  A). 

Using this terminology, the optimal average reward 
g* ( P )  of the initial constrained markovian decision 
process is equal to  y * ( P )  + A;(P,A)vi. In ad- 
dition, an optimal, in general randomized, stationary 
Markov policy T* can be obtained from c*(P)  by set- 
ting ?r*(alz) = n*(z, a; P ) /  Ca,EA(m) (T*(z, a’; P )  (c.f. 
[71). 

Let d*(z, a; P )  = d(z,  a; p z ( a ) ,  Y*(P), h * ( P ) ,  
A*(P))  denote the marginal reward of pair (z, U )  for 
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L P ( P , A ) ,  where, for y E R, q ,  h E RS, and X E 

~ ( z ,  U )  -EyEs q(y)h(y). Then, the optimality condi- 
tions for LP(P ,  A),  can be written as $*(z, a; P )  2 

iv) Critical State-Action Pairs. (a) For 
( z , u )  such that a @ O ( x ; P ) ,  let A O ( z , a ; P )  = 

denote the set of values q of the transition probabil- 
ity row for pair ( x , a )  under which a belongs to  an 
optimal (possibly randomized) policy. 

Define the set of critical state - action pairs 
for any P E p,  as B(P) = { (z, U )  : a @ O(z; P )  and 
AO(z, a; P) # S} . 

denote the Kullback-Leibler information number be- 
tween vectors p, q E O(z, U ) .  

(d) For ( % , a )  E B ( P )  let K ( z , a ; P )  = 
inf{I(p,(a), q )  : q E AO(z, a; P ) }  . 

Rm, 4(",a;q,g,h,X)  = r + h ( i ) + C Z 1  A ( i ) c i ( Z , a ) -  

0,  V(x, a). 

{P E @(x, a)  : 4(x, a; q ,  Y*(P), h*(% X*(P)) < 01, 

(b) 

('1 Let I(P, q )  = CyES+(z,a) P(Y> log[P(~)lq(~)l  7 

(e) Let M(P) = C ( r , a ) ~ B ( p )  4*(z, a; P)IK(z, a; 

2.2. Optimality Criteria. In the present context 
only adaptive policies are available. Let R ~ J ~ ( Z O )  = 
ng*(P) - VzlP(xo) represent the loss or regret, due 
to  partial information, incurred in the n-horizon ex- 
pected reward when a policy a is used. Maximization 
of Vz>p(xo) with respect to  a is equivalent to  min- 
imization of R ~ ~ p ( z o ) .  In general it is not possible 
to  find an adaptive policy which minimizes R z ~ ~ ( x 0 )  
uniformly in P .  Therefore, a different definition of 
optimality is required. 

A policy T will be called uniformly feasible ( U F )  if 
T E C p ( P ) , V P  E 9 such that C F ( P )  # 0. 

A UF policy T will be called uniformly conver- 
gent (UC)  if n g * ( ~ )  - v , " ~ ~ ( x o )  = o ( N ) ,  as N + 

00, vff > 0, V P  € 9 ,  vxo E s. 
A UC policy T will be called unaformly fast conver- 

gent ( U F q  if the following stronger condition holds: 
ng*(P) - v,"qxo> = o ( n Q ) ,  as N + 03, vff > 
0, V P  E @, vxo E s. 

A UFC policy T O  will be called uniformly maxa- 
mum convergence rate ( U M C R )  if limN-,m(n$*(P)- 

that M ( P )  > 0,  for all UFC 7r , Vzo E S.  Note 
that according to  this definition a U M C R  policy has 
maximum rate of convergence only for those values 
of the parameter space for which M(P) > 0; when 
M(P) = 0 it is UFC. 

Let CUF 2 CUC 3 CUFC II CUM denote the 
classes of U F ,  UC, UFCand U M C R  policies, respec- 
tively. 
Remark 1. Because Fn+m (ng* ( P)-Vc)p(  zo) ) /n  
= g*(P)-gg(P) 2 0, VT E: CUP, classes CUC, CUFC, 

- 

VzoJ'(x0))/(ng*(P)- V ~ ~ p ( ~ o ) )  5 1 ,  V P  E P such 

CUM can be expressed in terms of the rate of con- 
vergence of Vcip(zo)/n to  g*(P) as foIlows. 

If 7~ E Cut, then limn-+m V , " ~ ~ ( z o ) / n  = g * ( P )  for 
all P. No claim regarding the rate of convergence can 
be made. 

g*(P)1 = ~ ( n ( ~ - ' ) ) ,  therefore V ~ ~ p ~ z o ) / n  converges 
to  g*(P) faster than n("-'), V P  E P ,  V a  > 0. 

If a E CUM,  then, for all P E 9 with M(P) > 0 
the rate of convergence of Vc~~(zo)/n to  g*(P) is the 
maximum among all policies in CUFC and exactly 
equal to  M(P) lognln. 
2.3. Estimators. Given a history w k ,  define the 
following statistics. 
i) Let Tk(z) ,  Tk(z ,  a ) ,  T k ( x ,  y, U )  denote the num- 
ber of visits to  state z, the num5er of occurrences of 
the state - action pair (z, U )  and the number of tran- 
sitions from z to  y under action a, during the first 
IC transitions, i.e., ~k(x) = c:.z~ ~ t ( x > ,  T~(z, U )  = 

where &(x) = 1(Xt = IC), Zt (z ,a )  = 1(Xt = 
z , A t  = U )  and &(x ,y , a )  = l ( X t  = z , A t  = 
U,Xt+l = Y). 
ii) Let n t ( y ; x , a )  = 
Note that Tk(z ,  Y, a) = Wk(z,a)(Y; 2, a). 

iii) Let f t (y ; z , a )  = n t ( y ; z , a ) / t ,  for t 2 1 and 
fo(y;c, U )  = l/lS+(x, a) l ,  where IS1 denotes the car- 
dinality of any set S. 
iv) Let Vt 2 0 , j t ( a )  = k i y ( a ) ] Y E ~ ,  where f i iy (u)  = 0 
if y @ S+(z, U )  and 

and 
wt = t / ( lS+(z ,  u)I f t ) ,  otherwise. 

v) Let P k  = k~$ ' " ' " ' ( u ) ]  denote the estimate of the 
bransition law P ,  where we suppress the dependence 
o f j z $ z ' a ) ( a )  on ~ k ( z ,  y, a)  for notational simplicity. 

Note that this estimation scheme ensures that as- 
sumption (A) is satisfied. 

If a E CUFC, then it is also true that IV~~~(xo)/n- 

E:;: &(z, a )  and Tk(2, y, a)  = E::: Zt(Z ,  Y, a) ,  

1 ( q ( x , a )  = y), t 2 I. 

5ty(.) = (1 - wt).fo(y;z,.) + w t . f t ( y ; x , a )  , 

3. UMCR Index policies 
In this section two classes Ci ,  CA of adaptive policies 
are defined, and it is shown that if m = 0, that is, 
the markovian decision process is unconstrained, then 
CR c CUM, whereas if m > 0 a conjecture is made 
for CA. 

Given a history w k ,  define the following. 
i) The restriction 2)k C A as the product of the 

"relatively frequently sampled" action sets: 

Ilk(%) = Dk(z;Wk) = 

{ a  E A ( x ) ;  T k ( 2 ,  U )  2 log2T,(z)}, 

ii) Let ek = a(Pk,2)k)  be the primal and Tk = 

2 E S. 
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y ( P k , D t ) ,  ik = h ( P k , D k ) ,  ik = X(?,Vk) thedual 
solution of the restricted problem ( Pk, Vk). 

iii) For z E S, a E A ( z )  define the index U(x, a ; w k )  
as 

U(x, a ; q )  = 

I ( $ 2 ( z * a ) ( a ) ,  n) L logTk(x)/Tk(z, a ) ) ,  

for k 2 1, where a ratio of the form logk/O is assumed 
equal to  CO. 

iv) For x E S let 

r+; Pk, D ~ )  = 

r+; Pk,vk) = 
{ U E O ( X ;  P ,  Vk) : T k ( 2 ,  U )  < log2Tk(x) + 1 }, 

3.1. Unconstrained case. If m = 0, then the 
primal solution u*(P, D) satisfies the following: V x E 
S,  3~ = f (x)  E D ( x ) ,  such that u*(z ,  a; P , D )  > 0 and 
g*(x ,a ' ;  P , V )  = 0, for a' # f (x) ,  i.e., there exists a 
deterministic optimal policy f E V. In addition, the 
dual solution of any problem ( P ,  D) consists of y* , h* 
only. 

In the unconstrained case define the class Ck of 
i n d e x  policies which, at time k and state XI, = x, take 
any action from r l ( x ; P k , D k ) ,  if r , ( x ; P p )  = 
O ( x ;  @ , ? ) I , ) ,  and any action from I ' 2 (x ;Pk ,Vk )  
otherwise. 
Remark 2. (a) For all (x, a ) ,  U ( z , a ; w k )  5 
d(z, a;jj~(z~a)(a),~k, A h ) ,  i.e., ~ ( x ,  a ; w k )  represents 
a deflation of the marginal reward of the restricted 
problem. In addition, U ( x , a ; w k )  is decreasing in k 
and increasing in Tk(x, a) ,  thus giving higher chance 
to  the "under sampled" actions t o  be selected. 

(b) We refer to  the case in which at time k : 
I?&; pk, Vk) = O ( x ;  P k , V k ) ,  as a forced selection 
instance. The idea of the forced selections is that  if 
in some period k it is detected that none of the op- 
timal actions of the restricted problem (Pk, Dk) will 
be contained in the restricted set the next time state 
x will be visited, one of these actions is taken in or- 
der to  remain in the restricted set. As a consequence 
of the forced selection scheme, the optimal solutions 
of the restricted problems have the following asymp- 
totic monotonicity property: p,":J'[y(~, ~ k + 1 )  2 
y(P,Vz)k)] = 1 - o ( l / k ) ,  as k -+ CO, for all TO E (7;. 

O ( o ;  P ) ?  
Vx E Sl = 1 - o( l /k) ,  for all TO E C i .  This implies 
that ,  for large k, the sets Dk(x) will contain only op- 
timal actions, with high probability. Therefore, there 
is a reduction in the computational effort in solving 

(c) In [2] it is shown that P , " : J ~ [ D ~ ( ~ )  

the average reward optimality equations for the re- 
stricted problem (pk, Vk), as k increases. 

The next theorem is proved along the same lines 
as Theorem 1 in [2]. 

Theorem 1 F o r  m = 0 ,  

1. E,"%TN(Z, a)/logn 2 l /K(z,  a; P )  , 
V ( t ,  a)  E B(P),  v.lr E CUFC . 

2. VTO E Cg, V P  E ? and V x E S,a 6 O ( x ,  P ) ,  

(a) if(., a )  E B(P), t h e n  
- 
n-tcu lim E : ; ~ ~ T ~ ( ~ ,  a)/logn 5 I/K(Z, a; P ) ,  

otherwise 

limn+cu E,"Z1pT~(x, a) /  logn = 0. 
- 

(b) R ~ o ~ p ( ~ o )  = M(P) logn + o(l0gn) 

3. c; c CUM. 

3.2. Constrained case. In the constrained case 
(m  2 l), define a class CA of policies as follows. 
At time k and state X k  = Z, if I'1(x;Pjk,Vk) = 
O(c;  P k , V k ) ,  take any action from I'l(x; P k , V k ) .  
Otherwise, if there exists a E I '2(x;Pk,Vk), a 
O ( x ;  Pk, Vk), then take any such action. If no such a 
exists, then choose randomly among a E O(z; Pk, V k ) ,  
with randomization probabilities q(a) = ek ( a ) /  

In current work we aim t o  prove the following the- 
Ed € O ( z ; P k  ,Dk) ek (4 

orem, which we state as a conjecture. 

Theorem 2 F o r  m 2 1 ,  
hold f o r  a n y  adaptive pol icy  T E CA 

t h e  c l a i m s  of T h e o r m  1 
C U M .  

4. A Queueing/Reliability 
Application 

Consider a discrete time queueing system with a sin- 
gle server and a buffer with capacity s - 1. State 
i,i = 0 ,1 , .  . . , s, corresponds t o  i customers in the 
system, including the server. Customers arrive a t  
the system according to the following mechanism. If 
the system is in state i, i = 0 , .  . ., s - 1, at the be- 
ginning of a period, then Qij denotes the probabil- 
ity that there will be j arrivals during this period, 
j = 0 , .  . . , s - 1, and &is the probability tha t  the 
number of arrivals will be at least s. If more arrivals 
than the empty spaces in the system occur, the addi- 
tional arrivals do not join the syst,em, but rather they 
are lost. The probabilities Qij are unknown. 

There are two actions available in states i = 1, . . . , 
s - 1. Action 1 corresponds t o  the server being idle, 
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and action 2 to  server working. It is assumed that if 
the server works during a period, it is able to  serve 
all the customers waiting in the system and all the 
customers arriving during the period, thus there will 
be no customers in the beginning of the next period. 
In states 0 and s, only actions 1 and 2, respectively, 
are available. 

Reward ~ ( i ,  U )  represents profit from either serving 
the waiting customers if action 2 is taken, or from the 
server working on different jobs if action 1 is taken. 
Cost c(i, U )  represents operational expenses. 

The objective is to  find a policy for switching the 
server on and off, so that the expected average profit 
is maximized subject to  a constraint on the expected 
average cost. 

This queueing system is a special case of the model 
described in section 2, with state space S = (0,. . . , s}, 
action sets A(0) = {l}, A(l)  = .. .  = A(s-  1){1,2}, 
A(s)  = {2}, and transition law poj(1) = & o j , j  = 

and pio(2) = 1, i = 1 , .  . . , s. 

The model described above has the following ma- 
chine replacement interpretation as well. Consider 
a machine that  can be in one of states 0 , .  . . , s, at 
the beginning of a period, where the state denotes 
the level of damage, with state 0 corresponding to  
a new machine and state s to  a nonoperational ma- 
chine. Actions l and 2 represent operation and re- 
placement of the machine, respectively, and Qij is 
equal to  the probability that  a machine in state i in 
the beginning of a period, if not replaced, will be in 
state j in the beginning of the next period. A new 
machine is never replaced, and a nonoperational ma- 
chine is always replaced. The quantities ~ ( i ,  a),  c(i, U) 
represent expected one period profits and operational 
costs. The unconstrained version of the reliability 
model is included in [14], and also in [4], where uni- 
formly consistent policies are developed for the case 
of unknown Qij. 

In this section a 4-state ( s  = 3) instance of this 
problem is simulated for both the unconstrained and 
constrained cases, for a total number of 1000 transi- 
tions in each case. The (unknown) arrival probabili- 
ties matrix is taken equal to 

0 , . . . ,  S ,  pij(1) 1 Q;j, i  = 1 ,..., s - 1 j = 0 ,..., S ,  

0 0.6 0.1 0.3 , 
0.2 0.3 0.2 0.3 

0 0 0.4 0.6 1 Q =  [ 
the rewards ~ ( 0 , l )  = 15, r ( 1 , l )  = 9, ~ ( 1 ~ 2 )  = 2, 
r ( 2 , l )  = 11, r (2 ,2 )  = 4, ~ ( 3 ~ 2 )  = -3, the costs 
c(0, l )  = 10, c(1, l )  = 12, c(1,2) = 15, c(2, l )  = 14, 
c(2,2) = 18, c(3,2) = 20, and the upper bound on 
the expected average cost w = 13. 

Figures 1 and 2 below describe the evolution of 

the average reward, for the unconstrained and con- 
strained cases respectively. The optimal solution un- 
der complete information is equal to  g* = 8.83 for 
the unconstrained and g* = 8.76 for the constrained 
problem. 

96-1 

0 am 400 ~m 8W 1 ow 

Figure 1. Unconstrained Case 

8.2 : 
0 m 400 600 am IO00 

Figure 2. Constrained Case 
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