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We consider the dynamic repair allocation problem for a general multi-component system that
is maintained by a limited number of repairmen. Component functioning and repair times are
exponentially distributed random variables with known parameters. At most one repairman may
be assigned to a failed component and it is possible to reassign a repairman from one failed
component to another instantaneously. The objective is to determine repair allocation policies
that maximize a measure of performance of the system such as the expected discounted system
operation time or the availability of the system. We consider systems composed of highly reliable,
i.e., small failure rates, components and study asymptotic techniques for the determination of
optimal policies. In the final section we find asymptotically optimal policies for the series, parallel,
and a system composed of parallel subsystems connected in series.

(FIRST PASSAGE TIMES; MARKOV DECISION PROCESSES)

1. Introduction

A situation that arises in the maintenance of systems which operate continuously and
possess limited repair capacity can be modeled as follows. A system of known structure
is composed of N components and it is maintained by R repairmen, where R is less than
N. Since the number of available repairmen is less than the number of components, the
performance of the system depends on the maintenance policy employed, i.e., the set of
decisions on which failed components repairmen are assigned, whenever the number of
failed components is greater than R. Thus, it is important to have maintenance policies
that yield a maximum value to some relevant measure of system performance. Measures
of performance that can be used in this situation are the expected discounted system
operation time and the average system operation time (or availability of the system).

In this study we make the following assumptions. Each component and the system as
a whole can be in only two states, functioning or failed. The functioning and repair times
for the ith component are exponentially distributed random variables with known pa-
rameters u; and ;. Repaired components are as good as new. At most one repairman
may be assigned to a failed component and it is possible to reassign a repairman from
one failed component to another instantaneously. Components are independent, i.e.,
failure or repair of one has no effect on the others. Failures may take place even while
the system is not functioning.

Under these assumptions optimal policies can be obtained, in principle, using methods
from Markovian decision theory. However, the computational difficulties are prohibitive
due to the very large number of possible states. Therefore, explicit solutions and ap-
proximations can provide valuable insight. An explicit solution has been obtained for
the series system with N components maintained by a single repairman in Katehakis
and Derman (1984); see also Derman et al/. (1980), Nash and Weber (1982) and
Smith (1978).

* Accepted by John P. Lehoczky, former Departmental Editor; received June 4, 1984. This paper has been
with the authors 2 years for 3 revisions.
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In practice many systems are composed of highly reliable components. We have a
simple model for such systems if we assume that the failure rate for the ith component
is of the form pu;, | < i < N. Then, for small values of p all components are highly
reliable. We obtain analytical characterizations and derive recursive formulas for the
determination of policies that are optimal for small values of p. These asymptotically
~ optimal policies can be used as approximations to optimal policies for systems composed
of highly reliable components.

The approach used in this paper, with appropriate modifications, can be employed to
study more general models such as the case in which component failures cannot take
place while the system is not functioning, systems with dependent components such as
the case in which the failure rate of the ith component can be assumed to be a known
function of the status of some other relevant components, and models in which the
repairmen are distinguishable.

The first study of such a model for repair allocation was done by Smith (1978). We
extend the work of Smith in the following directions. We provide a formulation of the
problem along the lines of Markovian decision theory. We treat the multi-repairmen
case. We note that the recursive formulas for the determination of asymptotically optimal
policies essentially constitute a Gauss successive approximations method for solving the
general Markovian decision problem. We establish the existence of intervals of the form
(0, p*) with the property that if they contain the failure rates of all components, then
the asymptotically optimal policies under consideration are optimal, and in the final
section we find asymptotically optimal policies for the series, parallel, and a system com-
posed of parallel subsystems connected in series.

For the series system maintained by R, R = 2, repairmen it is asymptotically optimal
to assign repairmen to failed components with the longest expected repair times first.
Thus, we show that a result established in Katehakis and Derman (1984) for the series
system does not hold in the case of more than one repairmen.

2. Problem Formulation

Under the assumptions made, at any time the status of all components is given by a
vector x = (x, ..., xy) With x; = 1 or O if the ith component is functioning or failed.
Thus S = {0, 1}” is the set of all possible states. The structure of the system, i.e., the
relation between the status of the components and that of the system, is given by a
partition of the state space S into two sets G and B of “good” and ‘“bad” states, where
if x € G the system is functioning and if x € B the system is failed. Alternatively, this
relation can be specified by the structure function ¢ defined on S, such that ¢(x) = 1 or
Oifxe GorxeEB.

Throughout, we assume that the system under consideration is coherent, i.e., we place
the following restrictions on G and B (or, equivalently, on ¢). (i) f x€E Gand y = x
(ie,y;=Xx;, 1 <i<N)theny € Gand if x € Band y < x then y € B. (ii) For any
component i, 1 <i < N, there exists a state x € G such that state (0;, x) € B, where we
use the notation: (6x, x) = (X1, ..., Xk—1, 0, X+1, - - -, Xn), 0 = 0, 1. For x € § we define:
Co(x) = {i|x; =0}, Ci(x) = {i|x; = 1}. Given any finite set 4, | A| will denote the
number of elements in it. A state x € B such that y € G for any y = x, y # Xx, is called
a cut; it corresponds to a minimal set of components which by failing cause a system
failure. The size of a cut x is the number | Cy(x)].

Let R(x) = min{R, | Cy(x)|}, i.e., R(x) denotes the maximum number of components
that can be under repair when the system is in state x.

The above assumptions lead to the following formulation of the problem along the
lines of Markovian Decision Theory (see Ross 1970).

The state space is the set S defined above.
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The set of all possible actions in state x is 4(x) = {a: a € Cy(x), |a] = R(x)}. We
exclude from consideration actions that leave repairmen idle while there are failed com-
ponents since it is easy to show that policies that contain such actions can not be optimal
(see Smith 1978).

When the system is in state x and action a € A(x) is chosen the following transitions
are possible

(i) to state (1;, x), withrate \;,, i €E a,

(i1) to state (O, x), with rate puy, kK € C,(x).

When the system is in state x there is a reward rate ¢(x) (or equivalently, a cost rate
#(x) =1 — ¢(x)).

A nonidling deterministic policy = is a mapping that takes x € S into a subset 7(x)
€ A(x). Let II denote this finite set of policies. Notice that under any policy = in II the
evolution in time of the status of all components can be described by a continuous time,
finite state, irreducible Markov chain {x7(z) = (x7(¢), ..., x%(?)), t = 0}, where
x7(t) = x; if the ith component is in state x; at time ¢. It is known (Ross 1970, p. 114)
that optimal policies with respect to the discounted system operation time or the average
system operation time criteria exist in II. '

Let v,(x) (respectively w.(x)) denote the expected discounted time that the system
spends in nonfunctioning (respectively functioning ) states, when the initial state is x and
a policy = € II is employed. For notational simplicity we suppress the dependence of
v.(x) on the discount rate 8, 8 € (0, co) and the parameter p. Also, let f, (respectively
&.) denote the average time that the system spends in nonfunctioning (respectively func-
tioning) states, under = &€ II. Since for = in II, {x.(2), t = 0} is ergodic f,, g, are
independent of the initial state.

It is easy to see that v.(x) + w.(x) = 1/8 for all = and x in S. Hence, a policy
maximizes w,(x) if and only if it minimizes v,(x). In the sequel it is convenient to study
policies that maximize w.(x), for small failure rates, by considering policies that minimize
v.(x). An analogous argument allows us to do the same for the average system operation
time criterion, since f, + g, = 1 for all =.

3. Asymptotically Optimal Policies

We first consider the expected discounted system operation time criterion. It is known
(see Whittle 1983, p. 23 or Ross 1970, p. 120) that for any policy = in II the corresponding
values of v,(x), x € S, can be obtained as the unique solution to the following system
of linear equations:

1 _
= + >\,’ - 1,’, + jUr 0', s
UW(X) >\(7T(X)) + pM(X) + ﬁ {¢(X) ie,.-z(,\-) v ( X) je('zl(x) PH;Y ( ! X)}

xeSs, (1)

where we set AM(a) = Z;cq Ay u(X) = Zjec,(nm; and a sum over an empty set is defined
to be equal to zero.
It is known (Derman 1970) that there exists a deterministic policy 7* such that

Vox(X) < 0,(x) ¥VxeSs, ¥V # 7*. 2)

In the sequel we use (2) and Lemma 1 below in order to study policies that are optimal
for small values of p.

LEMMA 1. Foranyx€ S, € (0, co) and = in 11, there exists a power series expansion
of v(x), of the form

0i(x) = 3 0O (x)p". 3)

v=0
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PROOF. We can write the system of equations (2) in the following form

N(0) + B [o(x) + ie§(x) Avg(1;, x) + pjeczm wi(v(0;, x) —0.(x))], (4)
x € S. In matrix form (4) can be written as v, = b(w) + C(7)v, + pD(w)v,.

Under an appropriate labelling of the states (e.g. any labelling with the property: y
has higher label than x when | Co(x)| > | Co(y)|) the matrix C = C() is triangular and
all its elements are less than 1. Thus, (I — C)~! exists may be computed in a recursive
fashion. Thus, v, = (I — C)~'b + p( — C)~' Dv, or in more compact form:

Uy = g(m) + pQ(m)0,. &)

It follows from (5) that for any k = 1, we have:

VA(x) =

k
U(x) = g(m) + 2 p"(Q(m))’c(m) + p' (Q(m)) v (x). (6)
v=1
Now let ||Q(7)]|l denote a norm of the matrix Q(~), then (6) implies that (3) holds for
all p € (0, 1/1Q(m) ).

The next corollary provides a method for computing the coefficients v’(x) recur-
sively for increasing | Co(x)|.

COROLLARY 1. Foranyx€ S,B€ (0, ) and « inIl, the v (x)’s can be computed
recursively from equations (7), (8) below

v (1) =0, (7a)
Oy e L = P (O(1.
YO0 = Sy T P+ E A, ), (7
Dy = L (T (0. ) — 1)
P00 = Sy TR L Z M0+ D (00,0 ~ o], @
vr=0,x€ES.

PROOF. It follows from (6)thatv{®) = (I — C(x))~'b(=)and since C() is triangular,
v{% can be computed recursively by v{? = b(7) + C(x)v{® which is (7). Similarly,
pO) = (I — C(m)) "' D(r) v, hence v = C(w)v D + D(x)v which is (8).

REMARK 1. Note that equations (7), (8) constitute a Gauss Seidel iteration scheme
for solving the system of linear equations (1). Thus the overall approach of determining
policies that minimize the leading coefficients is essentially equivalent to employing a
so-called pre-Gauss Seidel iteration for the under consideration Markovian decision
problem, see Thomas et al. (1984 ) and references given there.

We next determine the leading coeflicients of the power series (3). It turns out that
the order of the leading coefficients is determined by the structure of the system. We first
need to define the following quantities. Let

m(¢) = min {|Co(x)| | X E B}, %)
By = {x € B| |Co(x)| = m(¢)}  and (10)
I(x) = min {|Co(M)| |y =x,y € B} — |Co(x)]. (11)

In the terminology of coherent structure theory, m(¢) is the size of a cut state of
minimal size, B,,4) is the set of all such states and /(x) is the minimum number of
components that must fail when the system is in state x, in order to cause a system
failure.
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The next lemma summarizes properties of /(x) that are easily verifiable from its def-
inition and the fact that ¢ is a coherent structure.

LEMMA 2. For any state x the following are true.

(1) 1(1) = m(¢) = I(x).

(ii) I(0;, x) = I(x) — 1, Vi€ C,(x).

(iii) If ¢(x) = 1 then I(x) = 1.

(iv) ¢(x) = 0 if and only if I(x) = 0.

V) IfyE B, i€ECo(¥),i=1,2,....k,and x= (1, ..., 1, y) then I(x)
= k. '

We can now prove the following.

LEMMA 3. For any x in S and any policy « in 11,
v¥(x)=0 whenever 0 <k <I(x)— 1. (12)

PROOF. By induction on k =0, ..., I(x) — 1 and subinduction on |Cy(x)| = O,

., N.

(i) For k = 0; we must show that v{®(x) = 0, for all x such that I(x) — 1 = 0. This
follows by induction on | Cy(x)].

(a) If |Co(x)| = 0 then x = 1 and therefore v{”(1) = 0 by (7a).

(b) Assume that (i) holds for all x such that |Co(x)| = v, I(x) = 1.

(c) Consider a state y such that |Co(y)| = v+ 1 and I(y) = 1.
Then, the induction hypothesis (i) (b), the observations that: ¢(y) = 0 when I(y) = 1
and |Cy(1;, ¥)| = », and (7b) imply that v{®(y) = 0.

(ii) Assume that the lemma is true for k = 0, 1, .. ., ko and for all x such that I(x)
—1=k.

(iii) We next show that it holds for k = ky, + 1 and for all x such that I(x) — 1 = k,
+ 1. Indeed:

(a) if |Co(x)| = 0, i.e., x = 1, we have from (8):

N
VA1) = ST (0800, 1) — vE0(1)]. (13)
j=1
Note now that I(0;, 1) = I(1) — 1 by Lemma 2(ii) and we have assumed that ko + 1
=< I(1) — 1. Hence, ko < I(0;, 1) — 1 and ko < I(1) — 1. Thus, the result follows from
(13) since by the induction hypothesis (ii) we have that v{¥(0;, 1) = v{*(1) = 0.

(b) Assume that the lemma holds, for any x such that |Co(x)| = ».

(c) Consider a state y such that |Co(y)| = v + 1. Then |Cy(1;, ¥)| = v for i € n(y),
and the induction hypothesis (iii) (b) implies that: v{**P(1;, y) = 0. Notice also that,
asin (a) above, ko < I(0;, y) — 1 and ko < I(y) — 1. Thus, the induction hypothesis (ii)
implies that v{(0;, y) = v{¥(y) = 0, for j € C,(y). Now, it is easy to complete the
induction step using (8).

A consequence of Lemmata 1 and 3 is the next

THEOREM 1. For any x € S and any w in I, there exist constants v (x) in
(0, o0), such that:

0,(x) = DY ()" + 0(p"), (14)

where the v/ (x)’s can be determined recursively as follows.
(i) For all states x such that I(x) = 0,

L+ 3 a0, 0l (15)

0 —
O = Sy e T 2,
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(ii) For all x such that I(x) = 1,

1 : e
[ = AU, x)+ 2 o790, x)]. (16)

pUON(x) = ———
Mm(x)) + B ierin JECI(x)

PrROOF. Equations (15) and (16) follow from Corollary 1 and Lemma 3. To show
that v/ (x) > 0 for all x, notice that this is true for all x such that I(x) = 0. The proof
can be completed by induction on I(x) using (16).

Theorem 1 shows that the order of the leading terms in the asymptotic power series
expansion of v,(x) is the same for all deterministic policies. Thus, we can formally state
the following.

PROPOSITION 1. A policy ©* in I minimizes the expected total discounted nonfunc-
tioning time of the system for small values of p if and only if:

v (x) = min {v{™(x), r €N}, VxES. (17)

In the absence of ties (17) determine unique asymptotically optimal actions for all
states. Ties can be resolved by computing and minimizing higher order coefficients subject
to minimizing all lower order coefficients.

REMARK 2. Notice that since v{¥(1) =0fork =0, 1, ..., I(1) — 1, the coefficients
v (x), for all x # 1, k < I(x) — 1, are the same with those in the asymptotic power
series expansion of the expected discounted time that the system spends in failed states
during the first passage time from state x to state 1 under policy «. Furthermore, it follows
from (15), that v{®(x) is equal to the expected discounted first passage time from state
X to state 1 in the absence of failures. Thus, we have the following partial characterization
of asymptotically optimal policies. If a policy is asymptotically optimal with respect to
the expected discounted system operation time criterion then, it must assign repairmen
to failed components in such a way that the expected discounted time that the system
spends in failed states during the first passage time from any state x € B to state 1 is
minimized.

REMARK 3. The approach used in this paper, i.e., to write (1) as (4) in order to obtain
(3) and (7), (8), can be employed to study more general models. Specifically, in the
following generalizations to the basic repair allocation problem under consideration, the
results of Lemmata 1 to 3 and Theorem 1 remain valid after appropriate modifications.

1. The model with distinguishable repairmen. We assume that the time required to
repair a the ith component with the jth repairman is an exponentially distributed random
variable with parameter A7, | <j < R.

In this case the main difference is in the action sets which are now defined as follows.
Ax)={a:a={(J,§),j=1,..., R(x), i € Co(x)}}, with the additional property
that if (j, i;), (k, ix) € A(x) and k # j then §; # i,. The pair (j, i;) specifies allocation of
repairman j to component i;.

2. The model in which failures cannot take place while the system is not functioning.
In this case we only need to multiply u; by ¢(x) in (1) while everything else remains
the same.

3. A model with dependent components such as the case in which the failure rate of
the ith component can be assumed to be a known function of the states of some other
relevant components, e.g., when the system is in state x the failure rate of the ith com-
ponent is a known function of the form pu;(x), where u;(x) are known functions of x
for example u;(x) = ;| Co(x)]. ’

We now turn to the problem of determining =« in II to maximize the availability of
the system. This is equivalent to minimizing f;. It is known (see Whittle 1983, p. 126
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or Ross 1970, p. 156) that for any policy = in II the corresponding to it value of f,, can
be obtained as the unique solution of the following system of linear equations.

W(x))f; o) T = X + puy 1AOF 2 Ml )
+ 2 ewh(0;,x)},  x€S— {1}, (18a)
JECH(x)
h(1) =0, (18b)
where /,(x) are the differential costs associated with = and we have arbitrarily chosen
hﬂ(lil)lr;hgrmore, there exists a policy #* in II such that:

feo<f.  forall winIL (19)
We next prove the following.

LEMMA 4. Foranyx€ S, x# 1, 8 € (0, o) and « in Il, there exist power series
expansions of f., h.(x) of the form

fi= 3 W, (20)
v=0
h(x) = 3 hO(x)p, x # 1. @)
v=0

PROOF. We can write the system of equations (18) in the following form:

N
f‘;r =p Z :ujh‘lr(oj’ 1)9 (223)

j=1

h, -+ Nha(1;,
(x) = X ( () [6(x) -, ’EWZ(X) (1;5 x)
tp 2 wi(h(0; x) — h(x))], (22b)
JECHx)
xXES, x# 1.

The proof can be completed with arguments similar to those used in the proof of
Lemma 1.

The next corollary provides a method for computing the coefficients /() h{(x),
recursively for increasing | Co(x)|.

COROLLARY 2. Foranyx€ S, 3 € (0, o) and w in Il we have

=0, (23a)
hO(x) = N ( Na(0) [6(x)+ 2 NALD(L;, )], (23b)
IE€Em(x) .

fon = > wh(0;, 1), (24a)

Jj=1
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h;_"“)(x) — [__firll+l) + z Aih.sr‘”-l)(li’ x)

ieEn(x)

1
A(m(x))
+ 2 wh(0, x) = AP(x)],  (24b)

JECH(X)

vr=0,xES, x#* 1.
The following theorem is analogous theorem 1. The proof is similar and it is omitted.

THEOREM 2. For any x € S, x # 1 and any = in 11, there exist constants "),
v (x) in (0, 00), such that:

Jo = FEp10 4 0(p"), (25a)
he(x) = h{ED(x)p"® + 0(p"™). (25b)

REMARK 4. Asin Lemma 3 we obtain that the coefficients £/ and h/*)(x) can
be determined recursively as follows.
(i) For all states x such that I(x) = 0,

=0, (262)
1
her) X)=——[1+ }\,»hﬁro) 1,~,x . 26b
) = Sy 1+ 2 MAO 0] (26b)
(ii) For all x such that I(x) = 1,
N
SYO = 3 whEO70(0, ), (27a)
j=1
1 .
((x)) - [ U RUGN (],
HE ) = Sy A F T A )
+ 2 whiO70,x)],  x=1. (27b)

JECI(x)
Now it is easy to establish the following.

PROPOSITION 2. A policy =* in I maximizes the availability of the system, for small
values of p if and only if:

R (x) = min (A (x), r €T}, Vx€E€S, x#1. (28)

In the absence of ties, (28) determine a unique asymptotically optimal policy. Ties
can be resolved by considering higher order coeflicients as computed by (24).

REMARK 5. Notice that when the system is in a failed state x, I(x) = 0, and
h{9(x) as determined from equations (25b) is the expected time until the system is back
in operation when the initial state is x, policy = is employed and there are no failures.
Thus, we obtain the following, intuitively expected, partial characterization of policies
that maximize the availability of the system, for small values of p. When the system is
failed such policies must assign repairmen to failed components in such a way that the
expected time until the system is back in operation, in the absence of failures, is minimized.

In the next theorem we show that asymptotically optimal policies are strictly optimal
when all failure rates are sufficiently small.

THEOREM 3. Let ©* be an asymptotically optimal policy, with respect to one of the
criteria that have been considered. Then, there exists a py > 0 such that ™™ is optimal
¥p € (0, po).
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PROOF. We prove the theorem for the expected discounted operation time criterion
only. The proof for the maximum availability criterion is similar and is omitted.

Recall that for any policy 7 in II and for p € (0, 1/]|Q(w)|) the v.(x)’s possess
convergent power series expansions. Since there are finite many policies in II, it follows
that the above power series representations of all v,(x)’s are convergent for all 7 in II
in the interval (0, p,), where p; = min,eu{1/11Q(7)|l }.

Now for any x € S and =, m, in II, it follows (see Rudin 1976, p. 177) that the
difference: v,,(x) — v,,(x) may change sign a finite number of times. Thus the theorem
follows from Proposition 2 and the fact that there are finite many policies in II and states
in S.

4. Applications

In the following examples we restrict our attention to determining policies which are
asymptotically optimal with respect to the availability criterion.

4.1. Series and Parallel Systems

Consider first the N component series system maintained by R repairmen. The only
functioning state isstate 1 = (1, . . ., 1). In Katehakis and Derman (1984) it was established
that when R = 1 the optimal policy always assigns the repairman to the failed component
with the smallest failure rate (SFR policy).

From Proposition 2, Remark 4 we know that an asymptotically optimal policy =*
minimizes the expected time to state 1 from any initial state x in the absence of failures.
Thus, in the terminology of stochastic scheduling, an asymptotically optimal policy min-
imizes the expected makespan for allocating | Cy(x)| tasks (repairs) on R identical pro-
cessors (repairmen ), for any state x.

It is easy to see that all policies in IT have the same makespan: 71{°(x) = Z;ecyx) 1/ N
and to show that the SFR policy is asymptotically optimal by considering higher order
coefficients. For R > 2, it has been shown by Bruno ef al. (1981) that an optimal policy
assigns repairmen to failed components in Cy(x) according to the LEPT (Longest Expected
Processing Time First) rule. In the context of the series system an asymptotically optimal
policy assigns repairmen to the failed components with the longest expected repair times.
Notice now that this LEPT policy is optimal for sufficiently small failure rates (by Theorem
3). It follows from this example that in the general case the optimal policy does depend
on the repair rates, and therefore the SFR policy is not optimal for R > 2.

For the parallel system the only failed state is state 0 = (0, . . . , 0). Furthermore, /(1;, x)
= I(x) + 1 for all x # 1, thus it is easy to show, using Theorem 2, that the policy
which always assigns repairmen to the failed components with the smallest repair rates
is asymptotically optimal.

4.2. Parallel Subsystems Connected in Series

Consider a system that is composed of K subsystems and it is maintained by a single
repairman. The /th subsystem is composed of N components with the same failure rates
u;. Furthermore, we assume that all components have identical repair rates A.

Since the subsystems have identical components, it is easy to see that the state of the
system at any time can be adequately specified by a vector z = (z,, ..., zx), where z;
denotes the number of functioning components in subsystem 7, z; = 0, 1, ..., N. The
structure of the system is specified by the sets G = {z|z; = 1 Vi}, B = {z|z; = 0 for
some i}. Let Co(z) = {ilz; =0}, (n;, z) = (21, ..., Zi-1, N, Zjs1, ..., 2x), 1 =0, 1,
..., N, and define (n;,, ..., nj, z) recursively by (n;,, nj,, z) = (n;, (n;, z)). Note
that J(z) = min {z;, i = 1,..., K}. Finally, let J(z) = {i|z; = I(z)} and J((n,,, .. .,
n;,Xx))=min {z;, i #ji,...,Jjk}.Since subsystems have identical components a policy
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is specified up to the subsystem on which the repairman is assigned only. With this
generalization of notation, using Theorem 2, we obtain that the asymptotically optimal
policy is given by the following simple rule.

(i) If z € G assign the repairman to system j if and only if either J(z) = {j} or u;
=max {u;, [ € I(2)}.

(ii) If z € B assign the repairman to subsystem j if and only if 4; = min {u;, i € Co(2)}.

The proof of (i) essentially involves establishing by induction on # that if J((n,,, ...,
n;,z)) =n+ 1then

k
R (ngy, ooty x) =0l 3 juIN 0 p =1, (N, ...,N)— 1. (29)

Jj=1

The proof of (ii) is easy to complete by induction on increasing |J(z)].!

! We wish to thank an anonymous referee for several useful observations and suggestions that have improved
this paper considerably.
Work supported by USAF Contract AFOSR 87-0072 and NSF Grant ECS-85-07671.
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