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Optimal Repair of a 2-Component Series-System
with Partially Repairable Components

Michael N. Katehakis uniformly to zero. Derman et al. [31 established the op-
State University of New York, Stony Brook timality of -r* for the case in which all repair rates are

Pravin K. Johri equal. Finally, Katehakis & Derman [7] proved that 7r* is
AT&T Bell Laboratories, Holmdel optimal for all values of the repair and failure rates.

A common (and the simplest) way to maintain such a
system is to assign the repairman to a failed component,

Key Words-Dynamic programming, Policy improvement, First wait till the component is fully repaired and then let the
passage time, Alternating renewal process, Availability. repairman idle until the next component failure occurs. If

the other component, however, is already failed then the
Reader Aids- repairman goes to work on it immediately. This

Purpose: Present a derivation. mitnneplc osntrqieayseilisrc
Special math needed for explanations: Probability, dynamic programming maintenance policy does not require any special instruc-
Special math needed to use results: Same tions for the repairman.
Results useful to: Maintenance theoreticians This policy need not be the best way to maintain the

system and it might be beneficial to reassign the repairman
Abstract-A 2-component series system is maintained by one repair- from one failed component, before it is completely

man. The up-times of the components are s-independent r.v.'s with ex-
ponential distributions. The time required to repair a failed component is repaired, to the other failed component. However, such a

the sum of a number of s-independent, exponential r.v.'s. Components reassignment would require special instructions for the
can be partially repaired, and a working component can fail even while repairman and a time penalty could be assessed each time it
the system as a whole is not functioning. The analysis finds repairman is done. Two cases are studied.
allocation policies which maximize the system availability. Under the 1. There is no penalty, that is, reassignments are in-
assumption that it is permissible to reassign the repairman instantaneous-
ly among failed components, the explicit form of optimal policies is ob- stantaneous. The optimal policy is first to complete all but
tained. And, the optimal policies are characterized when the time for such one stages of repair on both components, reassigning the
a reassignment is allowed to be an exponential r.v. repairman as necessary, and then to complete the last stage

of repair in a predetermined order based only on the values
of the repair and failure rates.

2. A penalty of a random amount of time, which is
1. INTRODUCTION exponentially distributed with rate X,, is assessed. If \, is

greater than a certain constant al then the reassignment
Consider a 2-component series (1-out-of-2:F) system policy in case 1 should be used. On the other hand, if X, is

maintained by one repairman. The up-times of the com- less than another constant a12 then the repairman should
ponents are s-independent r.v.'s with exponential distribu- not be reassigned at all. The values of al, a2 are obtained
tions. Repair of a failed component consists of several in terms of the failure and repair rates.
stages. The time required to complete a stage is an
s-independent exponential r.v. A component is partially
repaired if some, but not all, stages of repair have been 2. INSTANTANEOUS REASSIGNMENT MODEL
completed. The component begins functioning as soon as Assumptions:
all stages of repair are complete, even if the system as a
whole is failed. The problem is to decide which failed com- 1. The up-time of component i is an exponentially
ponent should be under repair so that the set of all these distributed r.v. with rate ,4i, i = 1, 2.
decisions in time (ie, the maintenance policy) maximizes 2. Component i requires ki stages of repair. The time
the average s-expected system operation time, ie, the to complete stage j is an exponentially distributed r.v. with
availability. rate Xii.

The series system has been studied under the assump- 3. The repairman may be reassigned instantaneously
tion that the repair of each component is of exponential from one failed component to another.
duration and is s-independent of the state of the system, 4. The repairman is not allowed to be idle while a
and that it is allowed to reassign the repairman instan- component is failed.
taneously. Smith [9, 10] has shown that the policy lr*,
which assigns the repairman to the failed component with Notation:
the smallest failure rate, is optimal for: i) a 2-component
system, ii) an n-component system within a class of "list k, number of stages of repair required for compo-
policies", and iii) in the limit when the failure rates tend nent i.
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XU rate of the exponentially distributed repair time of It is a standard result of Markov decision processes [2, 8],
state j of component i. that a policy 7r* is optimal if and only if the associated

A4i rate of the exponentially distributed up-time of s-expected first passage times T74(N) satisfy (3):
component i.

I

N (n1, n2) state of the system; ni =j if and only if Tr (N) = min
component i has j stages of repair completed E CO(N) X(o) + 1(N)

S {N= (n1,n2): n = O, l, ... ,k1;n2 = O, l, ... k2}
set of all possible states

I + X(a)T.r(l,1 N) + 22 Tlr*(O1,I N)]
K (k1, k2) the only state in which the system func- jEC, (,

tions.
Co(N) {i: n, < ki} set of failed components NE S- {K} (3)
C1(N) {i: ni = ki} set of working components

(1g N) J(n1 + 1, n2) , forj = 1 It follows that r* is optimal if and only if the inequalities
(li,j'~ l (n1, n2 + 1) , for ] = 2 (4) can be established.

(O N) f(0, n2), forj =1 1
(Oi'~ t(nl,),_for_j_=2 T__N)'<

Ri E (I IxiJ)ItNI(/) [1 + X(a)T7*(1a, N) + 2 tj Tr(O1, N)]
jEC1 (N)

NES-II ON 7*NJ 4LI finite set of deterministic policies N E S - {K}, a E Co(N) - {r*(N)}. (4)
T7(N) s-expected first passage time from state N to state

K for a policy 7r E Ij Furthermore, lr* is the unique optimal policy if inequalities (4)
r(N) the component the repairman is assigned to by are strict.

policy 7r when the system is in state N
\(ir(N)) Xi i+l for 7r(N) = i Optimal Reassignment Policies

Conditions for Optimality Ref. [6] shows that any deterministic policy 7r1 which
satisfies (5) and (6) also satisfies inequalities (4) and hence is

A policylv* EI is optimal with respect to the max- optimal with respect to the maximum availability criterion. A
imum availability criterion if and only if: proof is given in (12].

T,*(N) < T,7(N), foreveryNE S, forevery r E H. (1) _ 1, forNE S:n1 <k1-1,n2 = k2-1
ir1(N)- 12, forNES:n<k1-1,n2<k2-1 (5)

This statement is proved in [8, 9]. This proof is outlined , or . k,- 1, n2 2-

below.
When a deterministic policy is used, the time evolu- 7r,(k1 - 1, k2 -1) = 1, for,Ll2kkl - 2 (6)

tion of the system state can be described by a continuous 2, otherwise
time, finite state, irreducible Markov chain. Furthermore,
the s-expected average system operation time is then equal 3. REASSIGNMENT PENALTY MODEL
to the steady-state probability of the system's being in state
K. Returns to state K generate an alternating renewal pro- Assumptions
cess with the property that the sojourn time in state K and The up-time of component I iS an exponentiallythe transition probabilities to other states are independent.. ..~pobbii distributed r.v. with rate M x = 1, 2.of the policy. Thus, maximizing the steady-state probabili- 2. Both components require k stages of repair. The timety of the system's being in state K is equivalent to minimiz- to complete any stage of repalr of component i is exponential-
ing the s-expected first passage times to state K over all ly distributed with rate X,.
possible initial states.possibl inta sae. 3. Any reassignment of the repairman, other than uponBy conditioning on the first transition out of state N,
the T,,(N)s are the unique solution to the system of linear completion of all stages of repair on a component, incurs a
equations (2): time penalty. A random amount of time exponentially

distributed with rate Xs is required for such a reassignment.
T,~()=1 4. The repalrman is not idle while a component is failed.

X1 (ir(N))T1e ,1 + jE,(N)O>)

N E S - {K} (2) k number of stages of repair required for each compo-
T~(K) = 0 nent
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x\i rate of the exponentially distributed repair time of Optimality of the Reassignment Policy
any stage of repair of component i
rate of the exponentially distributed up-time of Without loss of generality assume 112. Define the
component i reassignment policy 7r2 as:

N (n1, n2, r) state of the system; ni = j if and only if
component i has j stages of repair completed; r ir2(n,, n2, 1) = 1, forn, = 0, 1, ..., k-2; n2 = 0, k-i, k.
denotes the component currently under repair (r
= 0 if both components are working) 7r2(n1, n2, 2) = 2, for n, = 0, k-I, k; n2 = 0, 1, ..., k-2.

S set of all possible states
K (k, k, 0) the only state in which the system func- ir2(k-1, k-1, 2) = 7r2(0, k-i, 2) = r2(k-1, k-i, 1) = I

tions.
7r deterministic policy A2(k-1, 0, 1) = 2
ir(N) the component the repairman is assigned to by

policy ir when the system is in state N. K2 gives priority to component 1 since ,<' A2. If reassign-
X(-r(N)) Xr, for 7r(nl, n2, r) = r; X5, otherwise. ment has been instantaneous w2 would have been the op-

timal policy. 7r2 iS the unique optimal policy if Xs E (ul,
The rest of the terms are defined as in section 2 but with oo) for a, defined by (7). For the proof refer to [12].
the new state vector N = (n,, n2, r).

)X1X2 + XIILI - X2/2 2X1\2 - X1A1C
Conditions for Optimality a, max k(u2-It1) ' likc

As in section 2, a policy 7r* is optimal if and only if it
k

[x2/(x + )J (7)
satisfies (3). Optimality can be shown by establishing in- i=1
equalities (4).

Optimality of the Non-reassignment Policy
Statesfor which the Option of Reassigning Define the polityir3 as the policy which never
the Repairman is Inferior reassigns the repairman. 7i3 is identical to 'r2 except that:

Consider, for example, the system in state (n,, n2, 1)
with n, < k - 1, n2 ' k - 1. The options available in this 7r3(k-i, k-I, 2) = ir3(0, k-i, 2) = 2,
state are: to continue repairing component 1, or to reassign
the repairman to component 2 and to incur the penalty. It ir3(k-1, 0, 1) = 1.
is clearly inferior to reassign the repairman unnecessarily.
Thus, if the reassignment option is chosen, the repairman 7r3 is the unique optimal policy if Xs E (0, a2) for a2 de-
must continue to repair component 2 until either i) compo- fined by (8)-(10). For the proof refer to [12].
nent 2 is functional, or ii) k - 1 stages of repair are com- -1
plete and the repairman is reassigned back to component 1. X___I k _ 2k___
For case i, the repairman resumes repair of component 1. a2 [max j \ + ,d +y&e A
However, component 2 is working now and can fail during (8)
the repair of component 1. Contrast this with the alter- k Fl-all
native of reassigning the repairman from component I to d a + b - ab Lxi + X
component 2 only when k - I stages of repair have been 1 2
completed on component 1. When the repairman returns k [1 1 - b (
to component 1, after completing the repair on component e a+b-ab L,, + X
2, only one stage of repair needs to be completed. Hence,

j]kthe chances of component 2 failing in the meantime are a [X2/(X2 + p1)]
smaller than for case i); therefor case i is clearly an inferior (10)
repair policy. This alternative of reassigning only when k - b [X1/(XI + A2)1k
1 stages of repair are complete on component 1 is also at
least as good as case ii.

Using similar arguments as above for other states, the 4. EXAMPLES
option of reassigning the repairman needs to be considered Example 1: k = 2, X = 1, X = 2, - 3, -1 4.
only in states (k- 1, 0, 1), (0, k-i1, 2), (k- 1, k- 1, 1), (k - From (7), Tr2 IS unique optimal if Xs E(13.51, oo).

As a consequence of not reassigning the repairman Frm()i),r3sunqeotalfX e0,1.)
unless at least k - 1 stages of repair are complete, states Example 2: k = 10, X1 = 1, X2 = 2, yl = 30, 112 = 40.
(n1, n2, r), for0 < n1 < k- 1, 0 < n2 < k-i1, r = 1, 2 are From (7), w2 iS unique optimal if X\s E (114.94, mo).
never encountered. From (8)-(10), 7r3 iS unique optimal if Xs E (0, 11.38).
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5. SPECIAL CASE (k = 1) OF [7] M. N. Katehakis, C. Derman, "Optimal repair allocation in a series
EXPONENTIAL REPAIR TIMES system," Mathematics of Operations Research, vol 9, 1984 Nov, pp

615-623.
[81 S. M. Ross, Applied Probability Models with Optimization Applica-

For exponential repair times (k = 1) the preceding tions, Holden-Day, 1970.
analysis remains valid for policy 7r3 but not for policy ir2. [9] D. R. Smith, "Optimal repair of a series system," Operations
If k > 1 then states (k- 1, k- 1, 1) and (k- 1, 0, 1) are Research, vol 26, 1978 Jul, pp 653-662.
distinct and 7r2 takes different actions in these states. If k [10] D. R. Smith, "Optimal repair allocation - asymptotic results,"
= 1 then these states are identical and r2 is not well defin- Management Science, vol 24, 1978 Feb, pp 665-674.

e11] D. R. Smith, "Optimal repairman allocation models," University of
ed. However, the solution can be obtained in a similar California, Berkeley, Report ORC 76-7, 1976.
manner [12] and is: [12] Supplement: NAPS document No. 04016-A; 9 pages in the supple-

Since it has been assumed that /, < ,U2, the policy that ment. For current ordering information, see "Information for

always repairs component 1 before component 2 is optimal Readers & Authors" in a current issue. Order NAPS document No.
if X E r,2, °°) where 04016; 00 pages. ASIS-NAPS; Microfiche Publications; P.O. Box

L"2'9 3513, Grand Central Station; New York, NY 10017 USA.

CX2 = [Xply + X2/52 + X1X2]/(2 -Ad

Otherwise, the policy r3 which never reassigns the repair- AUTHORS
man is optimal.
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