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LINEAR PROGRAMMING FOR FINITE STATE
MULTI-ARMED BANDIT PROBLEMS*
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State University of New York at Stony Brook

We consider the multi-armed bandit problem. We show that when the state space is finite
the computation of the dynamic allocation indices can be handled by linear programming
methods.

1. iBtrodactfMu An important sequential control problem with a tractable solu-
tion is the multi-armed bandit problem. It can be stated as follows. There are N
independent projects, e.g., statistical populations (see Robbins 19S2), gambling ma-
chines (or bandits) etc.. The state of the pth of them at time t is denoted by x,it) and it
belongs to a set of possible states S, which in this paper is assumed to be finite. Let
5, =: { 1 , . . . , A,}. At each point in time one can work on one project only and if the
i>th of them is selected, one receives a reward r(f) = r'it) and its state changes
according to a stationary transition rule: py = P(x,(/+ l)=y|x^(/)= /) whfle the
states of all other projects remain unchanged: x,(< -f- 1) = x^it) iS K¥= P. Let xit)
= (x, ( f ) , . . . , x^it)) and let wit) denote the project selected at time /. The states of all
projects are observable and the problem is to choose ir(/) as a function of xit), so as to
maximize the expected total discounted reward, given an initial state x(0):

This problem can be handled, in principle, by the methods of Markovian Decision
Theory, see Derman (1970). However, a major difficulty in computations is the high
dimension of the state ^>ace: KiX • • • xK/^. Gittins and Jones (1974) (cf. Gittins 1979,
Whittle 1^0) have shown that an (q)timal policy has the following form. There exist
numbers M,ii), k E S,, I < v < N, the dynamic allocation (or Gittins) indices, such
that they define an optimal policy w" as follows: 7r**(x(0) = ^ if and only if Af,(x,(O)
= n;iax{Af^(x,(/)), 1 < ic < iV}. Furthermore the following two characterizations for
Af,(i) were given.

M,ii) - min j OT I sup£:( 2 a '<(0 + «^« I ̂ r(0) - »] = ml, (1)
[ T>0 \r-0 / j

where in ^uations (1), (2) above r denotes a stopping time for {x,itX t > 0).
In this paper we use (1) to show that, for any fixed p and k, M,ik) can be computed

by solving a dn^e linear programming problem. Computational pro<^ures for Uie
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indices when the state spaces are finite have also been developed by Beale (1979) and
Varaiya et al. (1984). Mra-e recently Katehakis and Veinott (1985) have discovered a
different interpretation for the indices ^lich shows that standard algorithms (including
linear programming for finite state spaces) of Markov Decision Theory can be used to
do the computations.

2. Linear iMt^yamming formulation. In this section we construct a linear program
for the solution of problem (1) for any fixed p and *;. Since we consider a fixed project
for notational convenience we drop the P from r", py, x,it), K,, 5,, A/,(/). For a in
(0,1) define:

/T-I V

<>,(OT) = supEl 2 «'^(,) + oc'm\x(0) = / . (3)
T>0 \f-0 I

The next lemma summarizes properties of <>,(OT), A / ( / ) ; proofs are given in Whittle
(1982, p. 210) and Ross (1983, p. 131).

LEMMA 1. a. <|>,(OT) = max{OT,r, -I- a ]
b. Mii) = min{OT |<^,(OT) = OT}.

c. For fixed i, ^,(OT) is nondecreasing, convex in m.

For fixed OT let P(OT) denote the following linear program.

minimize ^ "j

subject to

^-aPy)uj>r^, iES, (4)

K, < OT, / E S. (5)

Let ( «°(OT), / E S } be an optimal solution of P(OT). Following Derman (1970, pp. 114),
see also Kallenberg (1983) and Hordijk and Kallenberg (1984) one can prove the
following.

LEMMA 2. a. «,°(OT) == <>,(OT).

h. If {Uj, i E S] is any other feasible solution then w, > ufim)for all i E S.

Consider now the next linear program which we denote (P^).

minimize ^ yj"^ ^
jBS

subject to

(1 -a)z+ 2 {Sy - mj)yj > n, iES- {k}, ( 6 )

(7)

yi > 0,

z unrestricted.

Let {z°; yf, i E 5 } be an optimal solution of (/»*). Then we have

LEMMA 3. a-j^'-O.
b. z" > Mik).
c. Ifz > Mik), then {z; ufiz) -z,iES} is feasible for iP^) and 2,4,(^) >



1 tl YIH REN CHEN A MICHAEL N. KATEHAKIS

PROOF, a. It suffices to iK>tice that if {z; ̂ ,, l E 5} is a feasible solution for
then {z; ̂ ,, iE S} is also feasib^, where^, •'^,- it ii^ k and^^ — 0.

b. Notice that {̂ f + z°, i E S} is a feasible sdution of F(z°). Hence, by part (a)
above. Lemma 2 and Lemma l(a): z°->-;? + z ° > «V°)***(^°) > ^° i*-. «"
- *t(z°). Now, from the definition of Mik) it follows that z" > Mik).

c. For the feasibility of iP/t), only inequality (6) is aot trivial. To show that it holds it
suffice to prove that

z-a'2P,jUjiz^>r, (8)
yes

hokis. Now since z > Mik) it follows from Lemma 1 that «^(z)»«^k(^)" z, thus (7) is
identical to (4) and therefore it holds. FurtheniK»%,

where the first inequality follows siace {z; ufiz) - z, / E 5} is fea«bie for iP^) and the
second cme h<^ds since {yf -t- z°} is feasible for Piz^.

We are now in position to prove the following:

THEOREM. Z° •« Mik).

PROOF. From Lemma 3(b) we have that it suffice to show that z" < Mik).
Assume that z'̂  > Mik). Tbea, u»ng Lemma 3(c) we obtain:

) S K)
i¥'k

and we reach to a contradiction to Lemma l(c).
REMARKS. When we have obtained the solution to (P^) (and thus Mik)) in order to

C(MRpute Mil), we need to replace only two amstraints of iP^). Thus one can
ctmstruct an efficient sequential procedure to obtain all the indices. Even if one groups
all programs (P^), A: E 5 in an obvious way to fcMtn a single linear prc^ram this
program will contain S^.ii^^ constraints. The linear program for the multi-armed
bttiidit probiem that can be obtained uauig stantJard Maikovian Decision Hieory
nethods will c(mtain N JlC.i ^ , constraints.

The authors would like to thank an antmymous referee fw his
conscientious review that has greatly improved this paper.
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