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LINEAR PROGRAMMING FOR FINITE STATE
MULTI-ARMED BANDIT PROBLEMS*

YIH REN CHEN anp MICHAEL N. KATEHAKIS
State University of New York at Stony Brook
We consider the multi-armed bandit problem. We show that when the state space is finite

the computation of the dynamic allocation indices can be handled by linear programming
methods.

1. Introduction. An important sequential control problem with a tractable solu-
tion is the multi-armed bandit problem. It can be stated as follows. There are N
independent projects, e.g., statistical populations (see Robbins 1952), gambling ma-
chines (or bandits) etc.. The state of the »th of them at time ¢ is denoted by x,(¢) and it
belongs to-a set of possible states S, which in this paper is assumed to be finite. Let
S, ={1,..., K ). At each point in time one can work on one project only and if the
vth of them is selected, one receives a reward r(f)=r;(?) and its state changes
according to a stationary transition rule: p; = P(x,(t + 1) =j|x,(f) = i) while the
states of all other projects remain unchanged: x (# + 1) = x,(¢) if x # ». Let x(1)
= (x,(f), . . ., xy(?)) and let 7(7) denote the project selected at time 7. The states of all
projects are observable and the problem is to choose 7(¢) as a function of x(¢), so as to
maximize the expected total discounted reward, given an initial state x(0):

E,[ tgoa‘r(t) | x(O)].

This problem can be handled, in principle, by the methods of Markovian Decision
Theory, see Derman (1970). However, a major difficulty in computations is the high
dimension of the state space: K,x - - - xK, . Gittins and Jones (1974) (c.f. Gittins 1979,
Whittle 1980) have shown that an optimal policy has the following form. There exist
numbers M, (i), k € S,, 1 < » < N, the dynamic allocation (or Gittins) indices, such
that they define an optimal policy #° as follows: 7%x()) = » if and only if M,(x,(?))
= max{ M, (x,(?)), 1 < k < N}. Furthermore the following two characterizations for
M, (i) were given.

M, (i) = min{ml supE(7ila'r,;(t) + a'm|x,(0) = i) = m}, ()
>0 t=0

E -r:l t; , 0y =i

W) = sup EEEETEOI 5O = )

>0 I- E(a"xv(o) = i) ’ (2)

where in equations (1), (2) above r denotes a stopping time for {x,(¢#), 1 > 0).
In this paper we use (1) to show that, for any fixed » and k, M, (k) can be computed
by solving a single linear programming problem. Computational procedures for the
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indices when the state spaces are finite have also been developed by Beale (1979) and
Varaiya et al. (1984). More recently Katehakis and Veinott (1985) have discovered a
different interpretation for the indices which shows that standard algorithms (including
linear programming for finite state spaces) of Markov Decision Theory can be used to
do the computations.

2. Linear programming formulation. In this section we construct a linear program
for the solution of problem (1) for any fixed » and k. Since we consider a fixed project
for notational convenience we drop the » from r*, Pi» %), K,, S,, M,(i). For a in
(0, 1) define:

;(m) = supE(ri’a‘rx(,) + a'm|x(0) = i). &)
>0 1=0

The next lemma summarizes properties of ¢;(m), M(i); proofs are given in Whittle
(1982, p. 210) and Ross (1983, p. 131).

LemMA 1. a. ¢,(m) = max{m,r; + a3, psb;(m)}.
b. M(i) = min{m|¢,(m) = m).
C. For fixed i, $,(m) is nondecreasing, convex in m.

For fixed m let P(m) denote the following linear program.

minimize Y, u;

JjES
subject to
2 (8—aPpu>r, €S, 4
JES
u<m, Ii€S. &)

Let {u%(m),i € §) be an optimal solution of P(m). Following Derman (1970, pp. 114),
see also Kallenberg (1983) and Hordijk and Kallenberg (1984) one can prove the
following.

LEMMA 2. a. u®(m) = ¢,(m).
b. If {u;, i € S} is any other feasible solution then u; > uX(m) for all i € S.

Consider now the next linear program which we denote (P,).

minimize 3 y;+ Kz

jES
subject to
(I-a)z+ X (8;—apy)y,>r,, €S- (k) (6)
JES
(l—a)z-aZpkjyI.)rk, U]
jES
¥, 20,

z unrestricted.
Let {z% P, i € S} be an optimal solution of (P,). Then we have
LemMa 3. a. 2 =0.

b. 2% > M(k).
c.If 2 > M(K), then {z;uX2) — z,i € S} is feasible for (P,) and T $,(z) > T #:(2°).
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Proor. a. It suffices to notice that if {z; y,, i € §} is a feasible solution for (P,)
then {z; §;,, i € S} is also feasible, where 5, = y, if i % k and , = 0.

b. Notice that { y? + z% i € S} is a feasible solution of P(z°). Hence, by part (a)
above, Lemma 2 and Lemma 1(a): z%= y0 + 2% > u%(2% = ¢, (2% > Z° ie., 2°
= ¢, (z°%. Now, from the definition of M (k) it follows that z° > M(k).

c. For the feasibility of (P,), only inequality (6) is not trivial. To show that it holds it
suffices to prove that

2 - a3 Pyu(2) >, (®)
JjES

holds. Now since z > M (k) it follows from Lemma 1 that u2(z) = ¢, (z) = z, thus (7) is
identical to (4) and therefore it holds. Furthermore,

$¢i(z) - §i:(u,9(z) —z)+ Kz >;(y,9 + z°) > §i:¢,.(z°)

where the first inequality follows since {z;4%(z) — 2z, i € S} is feasible for (P,) and the
second one holds since { y? + z°) is feasible for P(z°).
We are now in position to prove the following:

THeOREM. z° = M (k).

Proor. From Lemma 3(b) we have that it suffices to show that z% < M(k).
Assume that z° > M(k). Then, using Lemma 3(c) we obtain:

i§k¢i(M(k)) > gd’i(zﬁ) - M(k) >;¢i(zo) -20= i§k¢i(zo)

and we reach to a contradiction to Lemma 1(c).

REMARKS. When we have obtained the solution to (P,) (and thus M(k)) in order to
compute M(/), we need to replace only two conmstraints of (P,). Thus one can
construct an efficient sequential procedure to obtain all the indices. Even if one groups
all programs (P,), k € § in an obvious way to form a single linear program this
program will contain $¥_, K? constraints. The linear program for the multi-armed

pom}

bandit problem that can be obtained using standard Markovian Decision Theory
methods will contain N J[%., K, constraints.
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