MATHEMATICS OF OPERATIONS RESEARCH
Vol. 12, No. 2, May 1987
Printed in US.A.

THE MULTI-ARMED BANDIT PROBLEM:
DECOMPOSITION AND COMPUTATION *t
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This paper is dedicated to our friend and mentor,
Cyrus Derman, on the occasion of his 60th birthday.

The multi-armed bandit problem arises in sequentially allocatmg effort to one of N projects
and sequentially assigning patients to one of N treatments in clinical trials. Gittins and Jones
(1974) have shown that one optimal policy for the N-project problem, an N-dimensional
discounted Markov decision chain, is determined by the following largest-index rule. There is
an index for each state of each given project that depends only on the data of that project. In
each period one allocates effort to a project with largest current index. The purpose of this
paper is to give a short proof of this result and a new characterization of the index of a project
in state i, viz., as the maximum expected present value in state i for the restart-in-i problem in
which, in each state and period, one either continues allocating effort to the project or
immediately restarts the project in state i. Moreover, it is shown that an approximate
largest-index rule yields an approximately optimal policy. These results lead to more efficient
methods of computing the indices on-line and /or for sparse transition matrices in large state
spaces than have been suggested heretofore. By using a suitable implementation of successive
approximations, a policy whose expected present value is within 100¢% of the maximum
possible range of values of the indices can be found on-line with at most (N + T — 1)TM
operations where M is the number of operations required to calculate one approximation, T is
the least integer majorizing the ratio Ine¢/In 2 and 0 < g < 1 is the discount factor.

1. Introduction and summary. The multi-armed bandit problem can be described
in terms of sequentially allocating effort to one of N independent projects or sequen-
tially assigning patients to one of N possible treatments in clinical trials. In the sequel,
we discuss the problem in terms of project scheduling. In each period, one observes the
states of the N projects and activates one project in the period. The active project
earns a reward that depends only on the project and its state, and then moves to a state
in the next period according to a Markov transition law that also depends only on the
project and its state. The inactive projects in a period earn no rewards and their states
remain frozen in the period. The goal is to find a maximum- (expected-present-) value
policy for choosing the active project in each period.

Gittins and Jones (1974), alternately, Whittle (1980, 1982), and more simply, Varaiya
et al. (1985), have shown that the maximum-value N-armed bandit problem, an
N-dimensional Markov decision problem, can be reduced to a sequence of one-dimen-
sional stopping problems. In each of the latter problems, one finds for each state i of a
project, its index m; = max, ,,ER, /(1 — Ea"), where 7 + 1 is a stopping time for the
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project, 0 < a < 1 is the discount factor, and R, is the present value of rewards earned
in periods 1,..., 7 when the project is active in those periods. (Incidentally, the above
and all other expectations are conditional on the initial state, which is suppressed
throughout.) In each period, one selects as the active project one with largest index in
the current state. Gittins and Jones (1974), Gittins (1979) and Whittle (1980, 1982)
show that m, is also an indifference value, i.e., a stopping reward m for which one is
indifferent between stopping and continuing in state i. They suggest that m, be
computed by solving this last stopping problem parametrically for several values of m.
Beale (1979), Varaiya et al. (1985), Chen and Katehakis (1986) and Kallenberg (1986)
have respectively proposed policy-improvement, largest-remaining-index, linear-pro-
gramming and parametric-linear-programming methods for finding the indices in the
general finite-state case.

All these papers appear to have overlooked the fact that m, is the maximum value in
state i in the restart-in-i problem in which two actions are available in each period, viz.,
to continue or to restart instantaneously in state i. This observation reduces the
problem of finding m; to that of solving a single maximum-value discounted Markov
decision chain problem and so permits standard methods available for solving the
latter problem to be used to solve the former.

In §2 we use stopping times to give a short proof that an approximate largest-index
rule is approximately optimal. This provides a short proof that the Gittins-Jones
largest-index rule is optimal. In §3 we characterize the indices as values of restarting
problems. We use this fact in §4 to give short proofs characterizing the optimal
continuation and restarting sets for the restarting problems.

In §5 we use the above results to develop alternate methods of computing that are
often more efficient than earlier methods for large state spaces. There are two general
strategies for implementing the Gittins-Jones largest-index rule, viz.,, computing the
needed indices in advance or on-line. The first strategy entails computing in advance
the indices for every conceivable state of every project. The second strategy involves
computing on-line the indices only for those states that projects actually do enter. The
latter approach requires far less computation and also obviates the necessity for
providing the user with a large table of indices for all states of all projects.

When each project can be in one of at most a finite number § of states, the most
efficient of the algorithms mentioned above seems to be the largest-remaining-index
method of Varaiya et al. That method runs in O(NS?) time whether or not one
computes in advance, on-line or with transition matrices that are sparse, i.e., have
O(S) nonzero elements. By contrast, we show that in the worst case, application of
successive approximations (or its Gauss-Seidel improvement) to solve the restarting
problems runs in O(NS?) time (but not as fast as the largest-remaining-index method)
when computing in advance and in O(NS?) time when computing on-line. Moreover,
for sparse matrices, these running times fall to O(NS?) and O(NS) respectively. In
short, successive approximations is apparently significantly more efficient than the best
previously suggested method for computation on-line and /or with sparse matrices.

2. Approximate optimality of approximate indices. We now formulate the project-
scheduling problem more precisely. There are N independent projects, labeled 1,..., N,
only one of which may be active in each period. The state i} of project n in the tth
period it is active is a (for simplicity) countable-state Markov chain. Put i* = (if, i5,...)
and assume that i* and i” are independent for all k # n. The states of the N — 1
inactive projects in a period are frozen. If project » is active in a period when it is in
state i, the project earns a (for simplicity) bounded reward r". Inactive projects earn
no rewards. There is a discount factor 0 < a < 1. A policy is a (possibly randomized)
rule for activating projects that is nonanticipative, i.c., the project activated in a period
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dcpends only on the states of the projects observed in that and prior periods. The goal
is to find a policy with maximum (expected present) value.

We now require a few definitions. Put R}=1Xia’"'r} and A, =1 - a’. A random
time is a + oo or nonnegative integer-valued random vanable A stopping time for
project n is a random time o that is nonanticipative for project n, i.e., P(¢ < t}i") is
independent of i/, ,, il ,,... for each nonnegative integer . Call ER’/EA, the index
of the stopping time t + 1 > 1 of project n in state’i and call m? = max__,ER7/EA,
the index of project n in state i where the maximum- is over stopping times 7 + 1. A
policy may be described inductively by selecting, for each t = 1,2,..., a period 7, and
a project that will be activated during periods 7,_, + 1,...,7, where 7, =0 and
7,_, < 7, whenever 7,_; < o0. Since policies are nonanticipative and since i* and i" are
independent for k # n, 7, + 1 — 1,_, is the stopping time for the project selected in
period 7,_, + 1 relative to the state of the project in that period.

We now show that a policy is e-optimal, i.e., has value within e of the maximum
value, if the index of the stopping time of the project selected in any period is within €
of the largest of the indices of the projects in the period. When ¢ = 0, this specializes to
Gittins and Jones’ result. Our proof has much in common with, but is simpler than,
that of Varaiya et al. (1985).

The key fact underlying our development is that for any sequence 1 > 5; > 5, >
.-+ > 0 of Borel functions of i = (i},. ”),therelsarandomnmeoforwhlch
Ploztliy=s fort=12,..., so

o0
ER?=EY sa''r}. §))

tw=1

Oneuseofthisformu]aistoexpressthevalueoftheinoomethatapolicyearnsfrom
project n as ER” for a suitable random time o. This is done by letting s, = a’~ where
I,isthetthpcriodthatpmjectnisactivcwhenusingthegivenpolicy.

THEOREM 1. (Approximate Optimality of Approximate Largest-Index Rule). 4
sufficient condition for a policy to be e-optimal is that the index of the stopping time of the
project selected in any period be within € of the largest of the indices of the projects in their
States in that period.

PROOF. Let «* be a policy satisfying the hypotheses of the theorem and 7,_; + 1
be the tth period in which = * selects a project. Assume project one say, is selected in
period one. Put 7 = 7, and m' = ER'/EA,. By hypothesis, m' + € > m}, so for each
stopping time o + 1 for project n,

ER* < (m! + €)EA,. )

Let ¥, be the value of any policy « starting from the given initial state. Let #’ be an
arbitrary policy, > 0 be any fixed number and m, be a policy that activates each
project infinitely often and for which ¥, > V. — 6. Let =; be the policy that permutes
the order in which w, activates projects by shifting the first + times =, activates project
one to the first 7 periods. Let T be the period in which n, activates project one for the
rth time if 7 is finite and let T = oo otherwise.

For each fixed n and ¢ > 1, let /, (resp., /,) be the period in which =, (resp., v;)
activates project -n for the ¢th time. For 1 </, < T, set 5,=a"* if n=1 and
s,=a" '—al " if n>1 For I,>7T, I,=1, and we put s,=0. Observe that
0 < 5, < 1 is nonincreasing in ¢ > 1 because /, — ¢ > 0 is nondecreasing and, if n > 1,
{, - 1, < 0 is nondecreasing in ¢ > 1. Thus, from (1), there is a random time 6" < T
with P(o” > fi) = s, for t > 1. Also by (1), the difference between the values that =,
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and , earn from project n is EXP(a"~! — ab~')rf, and so is ER, — ER, if n =1
and ER%. if n > 1. Hence,

N
Vi~ Vi, = ER. - ¥ ER:.. 3)

na=1

If the rewards are 1 — a in each state, the left-hand side of (3) vanishes, so because
Yia/7Y(1 — a) = 1 — &, (3) reduces to

0=Ed,- ¥ EA,. @)

ne=1

Now it is easy to show for each n that 6” + 1 > 1 is a stopping time for project n
since P(¢" > tfi) is independent of i, ,,i" ,,... and i" is independent of i* for
k # n. Hence, from (2)—(4) and the definition of m',

N
Vo — Vo, 2 mEA, ~ (m' +¢€) ) EA,.= —¢EA,.

L1
n=1

Using the above construction, it follows by induction on 7 > 1 that there exist
policies «, that agree with #* through period r, > ¢ and have the property that
Ve, — Vo, > —€E(4, - A, ). Thus V, -V, > —€¢EA, > —¢ and V,. =
lim, , V, >V, —e>V, — e~ 0,s0because f is arbitrary, V. > V. —¢. =

3. Characterization of indices as values of restarting problems. In this section we
characterize the index of a project in a state as the value of the project in a restarting
problem. For notational simplicity, we drop the superscript designating the project in
the sequel without further mention. The sequence of states an active project enters is a
Markov chain on the countable state space I with transition probabilities p,;. Put
r = (r;) and P = (ap,;). For each state i, let P, be the ith row of P.

It follows from well-known results for discounted Markov decision chains that the
maximum-value vector for the restart-in-i problem is the unique bounded solution

v="1v'=(v)) of
v;=max(r,+ Pv,r,+ Pp), j€L ()

If we look at the process only at times when the process is in state i, then v; can also be
interpreted as the maximum value in state i for the corresponding embedded single-state
semi-Markov decision chain. Hence, v; satisfies v, = max, ,,E(R, + a'v;), or equiv-
alently, v, = m,, where 7 + 1 is a stopping time for the project, viz., the first period
after period one in which one chooses to restart in state i in the restart-in-i problem.
Thus, the maximum is attained. Moreover, m = m, = v, satisfies

m=r,+ Pp. (6)

On substituting (6) into (5), we obtain that (cf., Gittins and Jones 1974, Gittins 1979,
Whittle 1982) (v, m) = (v(m,), m,) is the unique bounded solution of (6) and

o, =max(r;,+ Po,m), jeEI, (7)
where v(m) is the unique bounded solution of (7). Thus v(m) is the maximum-value

vector for the discounted stopping problem with stopping reward m. These facts imply
most of the next result.
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PROPOSITION 2. For each state i, m,=vi.. Also m; is the unique solution of
m; =r; + Po(m,) and v' = v(m,) is nondecreasing in m,.

4. Characterization of continuation and restarting sets. The optimal continuation
set C, (resp., optimal restarting set R,) for the restart-in-i problem is the set of states j
for whnch continuation (resp., restarting in /) is optimal, i.e., for which r; + P,v' — m,
is nonnegative (resp., nonpositive). The optimal stopping time in the r&start-m—z
problem is the number of periods required for the state of the project to leave C,. Of
course one is indifferent between continuing and restarting for each state in C, N R,.
In particular, that is so of state i.

ProposiTION 3. (Continuation and Restarting Sets: Gittins). For each state i, C;
(resp., R,) is the set of states j for which m; > m, (resp., m; < m,).

PrROOF. By (7), llo(m)) — o(m)|l, < Im; — m}, so |Pu(m;) — Pu(m,)| <
ajm; — m,. Henceby(6),r+Pjv(m) m>0(resp,<0)1fandonly1fm—m
> 0 (resp., <0). =

Recall from Theorem 1 that a sufficient condition for a policy to be optimal is that
the largest-index rule is used in each period in which a project is selected. Proposition 3
assures that such a policy in fact uses the largest-index rule in every period.

Proposition 3 characterizes C; and R, in terms of the value of the index m;. But
what can be said about those sets if m, is not known? To answer this question, suppose
that I is partially ordered by the relation <. A subset J of I is called increasing
(resp., decreasing) if i € J and i < j (resp., i > j) in I implies that j € J. Call P
stochastically monotone if Pv is nondecreasing on I whenever v is nondecreasing and
bounded on I. Define R, by (R,v); = max(r; + P,v,r, + Pv) for each j€ I and
bounded v. Observe that R is a contraction with modulus a, and that ¢’ is the unique
fixed point thereof. Also R v is monotone in v. The next result extends related work of
Gittins (1979) and Ross (1983).

PROPOSITION 4. (Monotone Continuation and Restarting Sets). If I is partially
ordered, r is nondecreasing and P is stochastically monotone, then v' and m; are
respectively nondecreasing in i, j and in i. Moreover, C,2 C; and R, C R; fm' each
i<jinl, and C, (resp., R,) is increasing (resp., decreasmg) for each i in I

Proor. The hypotheses imply that R ;v is nondecreasing on [ if v is. Thus since 0
is nondecreasing on I, so is R0 and lim, , R0 = ¢v'. Now by hypothesis again,
V=RV <R fori< kin I, sov' <lim, R’ = v¥ whence v’ is nondecreasing
in i. The last two assertions follow from Proposition 3. =

5. Comparison of computational methods. Computation on-line. It is interesting to
ask what indices must be computed and when this must be done in order to implement
the Gittins-Jones largest-index rule. In the first period, it is necessary to compute the N
initial indices of each project. Subsequently, it suffices to compute at most one index in
each period. In particular, one computes the index of a project in a period when its
state first leaves the optimal continuation set of the project in the state and period of
its most-recent prior selection. Thus, by Proposition 3, if the indices are computed
on-line only as needed, the indices computed for each project will decrease strictly over
time.

Computations in finite state spaces. If there are S < + oo states, then equation (5)
for the restart-in-i problem can be solved by a variety of standard methods, eg.,

ve L5 licy i tor i nine. In imol .
ing these methods, it is convenient to observe that v} = r, + P,t’, so that one can
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replace 7, + P,v in (5) by v; for many purposes. However, one must exercise some care
in that event because v’ is merely the least solution of the revised version of (5).

Policy improvement. Beale (1979) suggested a method for finding the indices that
can be shown to be equivalent to use of the policy improvement method to solve the
restarting problems. However, the standard implementation of policy improvement
requires only about one-half the computations required by Beale’s implementation.

Largest-remaining-index method. Varaiya et al. (1985) use Proposition 3 to develop
a method that first finds the index of a state with largest index, then the index of a
state with next largest index, etc. This largest-remaining-index method requires about
S /3 multiplications and additions (and far fewer comparisons) if P is positive and at
least one-half that many if the number of positive elements of P is O(S). In most cases
the largest-remaining-index method appears to be superior to both the standard
version of policy improvement and linear programming. Actually, the largest-remain-
ing-index method finds the largest index less than the index m, of a given state i say,
provided that C; is known. This fact and the remark at the beginning of this section
suggest that the method will be especially useful if, when a project changes state, the
index usually does not drop very far.

Successive approximations. However, it appears to us that successive approxima-
tions (or its Gauss-Seidel improvement) is a more efficient way to solve the restarting
problems for large state spaces than is the policy improvement or largest-remaining-
index method. To see why, we show how to use successive approximations to find a
policy whose value is within 100¢% (0 < € < 1) of 8 = 8 — a of the maximum value
where a < 7,/(1 — a) < B. We allow a, B and r, but not 8, to depend on the project,
but we suppress this dependence for notanonal’ simplicity. In view of Theorem 1, it
suffices to show how to find a stopping time for each project whose index is within
100¢% of 8 of the index m; of the project in any state i. To that end, suppose that one
hasavmlablean&stxmawuofv‘mththepropertythatﬂ u<uand a gy < B for
all j (e.g., u; =B for all j will do). Then R¥u | v and v < v < vj + €8 for all j
where ¢! = (v "y = RTy and sztheleastmtegermajonzmglne/lna because, since R ;
isa contractxon w1th modulus a,

lo' — vl = IRTu — RT||, < aTlju — v, < a8 < €b.

Now let C; be the continuation set of v', i.c., the set of states j such that r, + P’ > v}
where u' = R7'u. Then, as above, the value of C, (i.e., the value of the associated
policy) in state i is at least v} — €8 > v} — €8 = m, — €8. The desired stopping time for
the project in state i is, of course, the number of periods required to exit C; starting
from state i.

If the computations are done on-line, then we must find a new approximate stopping
time for the pro;ect only when the project enters a state j & C,. In that event
R 0 <R, W <Ru' =y, sothatmapplymgsuocwmveapproxnnahons,wecantakc
v asthelmualestnmateof v’. Thus, v’ > v/, so the successive approximations of the
restarting values of a project diminish.

Running time. With successive approximations, if one has an estimate v of v’ at
hand, one computes a new approximation v’ = R, by the rules: v/ = r, + Pv and
A =max(rj+Pjv,v)forJ#-a Compuungeachappronmanon entails at most M
operauons, i.e., multiplications, additions and comparisons, where M is the number of
nonzeroeianentsml’Thnsthenumberofopemuonsneededtosnmateastoppmg
time and index for a project in a state is at most TM < TS
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If we estimate the stopping times and indices in advance for each state of each
project, the running time of successive approximations, measured in operations, is at
most NSTM. If instead we compute on-line, then it suffices to estimate an index and
stopping time for each project in its state in period one and for at most one project and
in one state in subsequent periods. Also any policy can be used after period 7. Thus,
when implemented on-line, the running time of successive approximations is reduced
by about a factor of S to at most (N + T — 1)TM.

Since T is independent of S, it follows that when the transition matrices are sparse
(so M = O(S)) or the computations are done on-line, successive approximations will
be more efficient than the policy improvement and largest-remaining-index methods
for large enough S because the last two methods still run in O(NS?) time (as they do
in general). On the other hand, if S is not too large and if both 1 — a and e are very
small, then the largest-remaining-index method will be more efficient than successive
approximations.

Another advantage of successive approximations is that its average running time is
often considerably less than that of its worst case. The reason for this is that one can
terminate before completing T approximations if two successive approximations v’
and v are.found for which ||o’ — v|| < €8(1 — a), because this assures that |m, — v/ <
8.

These methods can also be used to approximate the indices in infinite-state prob-
lems.
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