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The multi-armed bandit problem arises in sequentially allocating effcot to one of N prefects
and sequentially asngning patients to cme of N treatmoits in dinical trials. Gittins ainl Jones
(1974) have shown that oae. optintal policy Ua the JV-pn^ect problem, an A^dimensional
discounted Maricov dedskm chain, is detennined by tiK following largest-index nde. There is
an index for eadi state of eadi given project that depoids oidy on die data of that prcgect In
each period one allocates effect to a prcgect with largest current index. The purpose (A this
paper is to give a short pnx>f of this result and a new diaracterization of tbe index of a project
in state i, viz., as the nmrimiim expected present value in state i for the restart-in-( problem in
which, in eadi sute ai«i poiod, mie either amtinues allocating effc»t to the project or
immediately restarts the project in state i. lAoKovei, it is shown that an approximate
largest-index rule yields an approximatdy optinal p<dicy. These results lead to more efficient
BKthods of conqjuting the intUces on-line and/or fen- q>arse transition matrices in large state
qjaces than have been sugg^ted luretofore. By using a suitable inq>]ementation of successive
a|>proximati<»is, a pcdicy whose expected present value is within 100c % of the maximum
possible range ctf values of the indices can be found on-liiK with at most (N + T - l)TM
q>erations where M is the number of operations required to calculate one approximation, T is
the least integer nuycoizing the ratio In e/ln a and 0 < a < 1 is the discount factor.

1. IntrodoctiffiB and samaary. The multi-anned bandit problem can be desoibed
in terms of sequentiaQy allocating effort to one of N independoit projects or sequen-
tially assigning patients to one of N possible treatments in clinical trials. In the sequel,
we discuss the problon in terms of project scheduling. In each period, one observes the
states of the N projects and activates one project in the period. The active project
earns a reward that dq>ends only on the project and its state, and then moves to a state
in the next period according to a Maiicov transition law that also depends only on the
project and its state. The inactive projects in a period earn no rewards and their states
remain frozen in the period. The goal is to find a maximum- (expected-present-) value
policy for choosing the acti't^ project in each p^od.

Gittins and Jones (1974), alternately. Whittle (1980,1982X and nwre maply, Varaiya
et al. (1985), have shown diat the maximum-value iV-armed bandit problem, an
.^-dimensicmal Markov dedsi<Hi problon, can be reduced to a sequence of one-dimen-
sional stopping problrans. In each of the latter problems, one finds for each state i of a
project, its index m, s msx.,^iERJ(l - Ea^), where T -hi is a stopping time for the
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project, 0 < o < 1 is the discount factor, and i { , is the present value of rewards earned
in pmods 1 , , , . , T «dien the project is active in those periods. (Inddentally, the above
and all other expectations are conditional tm the initial state, whidi Is su{q>ressed
throughout.) In eadi pmod, one sdects as the active project one with largest ind« in
the current state. Gittins and JcaiK (1974), Gittins (1979) and Whittle (1980, 1982)
show that mi is also an indiff<arence value, Le,, a st(^>ping re^i^d m for which (me is
indififo^nt between stepping and continuing in state /. They suggest that m, be
computed by solving this last stcq^nng problem parametrically fw several values of m.
Beale (1979), Varaiya et aL (198SX Choi and Katdiakis (1986) and KaUenberg (1986)
have req)ectively propc^ed policy-improvement, larg^t-remaining-index, linear-pro-
gramming and parametric-linear-programming methods for finding the iiulices in the
general finite-state case.

All these papa's appear to have overlooked the fact that m, is the maximum value in
state i in the restart-in-i problem in which two actions are available in each period, viz,,
to continue or to restart instantaneously in state i. Uiis observation reduces the
problem of finding m, to that of solving a single maximum-value discounted Markov
decision chain probkin and so permits standard methods available for solving the
latter problem to be used to solve the former.

In §2 we use stopping tim» to give a short proof that an iq>proximate largest-index
rule is i^proximately c^timal. This provides a short proof that the Gittins-Jones
largest-index rule is optimal. In §3 we characterize the indices as values of restarting
problems. We use this fact in §4 to give short proofs characterizing the optimal
continuation and restarting sets for the restarting problems.

In §S we use the above r^ults to develop alternate methods of computing that are
often more effidoit than earlier nuthods for large state spaces, Hiere are two geno-al
strategies for in^lementing the Gitdns-Jooes largest-index rule, viz,, computing tfae
needed indices in adoance or on-line. The first s t r a t a entails computii^ in advance
the indices for e v ^ concdvable state of every projecL The second strategy involves
computing on-line the indices only for those states that projects actually do entex. The
latter approach requires far less computaticm and also obviates the necessity for
providing the user with a laige table of indices for all stat» of all projects.

When each project can be in one of at meet a finite numbo* S of states, the most
effident of the algoridims mentioned above seems to be the largest-remaining-index
method of Varaiya et al, Tliat method runs in 0{NS^) time wheth^ or not one
ccmiputes in advance, on-line or with transition matrices that are sparse, i.e., have
O{S) nonz^o elem^its. By contrast, we show that in the worst case, application of
successive ^proximations (or Its Gauss-Sddd improvement) to solve Ilie restarting
problems runs in O{NS^) time (but not as fast as the largest-remaining-index nwthod)
when computing in advance and in O{NS^) time vt^en conq)uting on-line. Moreover,
for i^arse matrices, tfiese running tin^s fall to O{NS^) and O{NS) req>ecttvdy. In
short, succesave iq^oximations is aiq>araitly significantly mtxe ^ d r a t than the best
previcHisly suggested method for conq>utatian (m-Une and/csr with ^arse matrkes.

2. Afprwsimite of^maMitjf el i^pieadBUte iaMees. We now f(Himilate the
sdieduling probten nK»e piedsdy, Tbae are N ln£k{)endent projecte, labded 1 , , , , , .^,
only one of which may be active in eaiii poiod. Hie state i" of prcgect n in die /th
pmod it is iu t̂ive is a (f(Hr slflq>Udty) ccwntable-state Maikov chain. Put i" s (/", /f* • • •)
and assunK that i'' md i" are indqmident for all k'^n. The states of tl^ .^ - 1
in^^ve pn^ects in a poiod are ftceaea. If pn^ect n is active in a period yAnea it is in
stale i, tbe fmgecA eaios a (for suq)lka^) bixmded Fewaid r'. buu^ve prcgecte earn
no revneds. Tbxaic is a ( f i sa^t factor 0 < a < 1, A pd&:y is a (possBc^ nuukaiuzed)
rate tfa ac^vatu^ p n ^ t ^ that is nontmtidpatioe, Le,, the i»!qect activated in a poiod
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depends only on the states of the projects observed in that and priOT periods. Hie goal
is to find a policy with maximum (ecpected pi&eaat) value.

We now require a few d^mitions. Put J?" s £Ja-'~*/f2 and A,^ 1 - a'. A randmn
time is a -i- 00 or nomiegative in^«'-valited random variable. A stopping time for
project n is & random time a that is nonantidpative for project n, i.e., P(a < /|i") is
indepoident of j"+i, 17+2,... fOT eadi nonn^ative int^er t. Call ER'/EA., the index
of the stopping time T -I-1 > 1 of project n in state! and call mf = max^^iER"/EA.^
die index of project n in state i whra'e the maximum is over st<^}ping tim^ T -t- 1. A
policy may be desmbed indiKtivdy by seating, for each r = 1 ,2 , . . . , a period r, and
a project that wiH be activated during pmods T,_I + 1,...,T, where TQ s 0 and
T,_i < T, whatever T,_I < 00. ^ c e polides are nonantidpative and ance 1* and i" are
independent for ik # w, T, -•-1 - T,_I is the stopping time for the project selected in
period T,.^ H- 1 relative to ihs state of the project in that period.

We now show that a pdicy is ^.-optimal, i.e., has value within c of the maximum
value, if the index of the stqjping time of tlw project selected in any paiod is within e
of the largest of the indices of die projects in the period. When e = 0, this spedalizes to
Gittins and Jones' result. Our proof has much in commcm with, but is simpler than,
that of Varaiya et aL (1985).

Hie key fact underlying our devdc^n^it is that for any sequence \> s^> S2>
• • • > 0 of Borel fonctions of i s ( j i , . . . , / * ) , thwe is a randc«n time a for which
P(a > /p) = s, for f = 1,2 , . . . , so

ERl^EZsra'-^l (1)
«-i

One use of this fc^mula is to ecpress the value of the incmne that a policy earns from
project n as ER' for a suitable rand(Hn time o. TWs is done by letting s, = a'>~' where
/, is the f th period that prefect R is active whoi ming the pvai policy.

THEOREM 1. (Approximate C^timaUty of Approximate Lai^est-Index Rule). A
sufficient condititm far a policy to be €-optimal is that the index of the stopping time of the
project selected in (my period be within e of the largest of the indices of the projects in their
states in that period.

I^OOF. Let v * be a pdicy satisfying the hypotlKses of tt» theoiran and r,_i -I-1
be the rth pmod in whidi tr* selects a project Assume prefect cme say, is elected in
period cme. Put T = TJ and m^ s ER\/EA^. By hypothesis, m^ + €> m?., so for eadi
stc^pii^ dome a -i- lf<x project n,

ER: < (m^ + e)EA,. (2)

Let J^ be the vsiias of any pdky v starting from lim given initial state. Let ir' be an
arbitrary polky, # > 0 be any fixed number and VQ be a pdiicy tfiat ac^vOb^ eadi
project infinitdy often aiKl tor yM± V, ^ V,. - O.ljet v^he the pdicy that permutes
tbe onkr in «4ik^ «o activate {Hvgects l>y duf t^ tite first r tunes % u^ivates prcgect
(me to the first T poiods. IM T bette period in «^idi % »;tî t̂tes prefect oasUxHtst
rth time if r is finite uid ^ r°= 00 ottowise.

For e»di fijMd n and / > 1, tet /, (req)., /,) be Ae period in w*k4i % (resp., v^)
acti^tes pngect H tot the ffli tikm. F<» 1 < /, < T, s«* 5,as a''* if it « 1 and
s, 3s a'>-' - a^-' if B > 1. Far /, > r, /, =• f, and we pit J ,« 0. (^sorve flat
0 < f, < 1 is mmmsieaw^ 'mt>\ hecmst /, - I > 0 is ^mdecaeas^ aid, if R > 1,
/ , - / , < 0 is noD^caeasbng ni r > 1. TIHIS, hvm (1), Hbe^ h a ma&om time 0" < T
with P(ir" > rf) •" «, fcM* < > L Ako by (IX the tfereooe be^reen ^ valaes O
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and ffj earn frcMn p r q ^ n is £ E f (a''~* - fl''~^)r,5, and so is ER\i - ER\ if « = 1
and ER", if « > 1, Hooce,

V,^-V,^^ER\- ZEK- (3)
«-i

If the rewards are 1 - a in eadi state, the left-hand side of (3) vanishes, so because
U^aJ-\l -a)''I-a', (3) reduces to

0 = £4,-££^.., (4)
n-l

Now it is easy to show for each n that a" + 1 > 1 is a stcqjping time for proyect n
since P{a'' > tf) is indep«ictent of 'f+i, »7+2>--- and i" is independent of i* for
k * n. Hence, from (2)-(4) and the definition of m\

F., - F,̂  > m^E^, - (w^ + €) £ EA,, = - c E ^ , ,
n - l

Using the above construction, it follows by induction an t>\ that there exist
p<dicaes v, that agree with w* through period T, > / and have the prcq>erty that
V'. - V,,^. > -«^(^T, - ^n . . ) . TTius F,, - F,̂  > - £ £ 4 , , > - « and F , . =

^F^ > F,^ - e > F,, - e - fl, so because 9 is arbitrary, F , , > F,, - c. •

3. ChanM^oizatioB (rf BM&»S te vatoes of rertarting iHtMoK. In this secticm we
charactoize the index of a project in a state as tiie value of tte project in a restarting
problon. For notational sinq)Udty, we drc^ the supo'script designating the project in
the sequel with(»it furtiier n^ntion. The sequence of states an active jmiject enters is a
Markov chain on the countable state space / with tranation probabilities Pij. Put
r s (r,) and F ^ (^y) , Fw eadi state i, let P, be the ith row of P.

It foUows from well-known results for disanmted Markov dedaon chains that Uie
maximum-value vector fen* the restart-in-i problem is Uie unique bounded soluticm

of

. + ¥p, r, + Fp), j e /, (5)

If we lode at the process (mly at tim^ wben the process is in state i, thffl o, can also be
interpreted as the maximum value in state i for tlu ccHrespcmcfing embedded single-state
semi-Markov ded»on diain, Hraice, ô  satisfies o, = vaax.,.^-fi{R., + a'̂ o,), at equiv-
alently, D, = m ,̂ whoe r + 1 is a stt^ping tinK for the project, viz,, tte first pmod
afto- poiod one in lxdudi (me cho(Kes to restart in state i in tiu restart-in-i problem,
Hius, d » maximum is attaiiud, M(»eova-, m=^mi = &, satisfies

TO = fi + Ffi. (6)

On sul^tituting (6) into (S), we obtain tbat (cf,, Gittins and laass 1974, Gittins 1979,
Whittle 1982) {v, m) = {t>{m^, m^ is the unique bouiuled sduticm of (6) and

m ) , j e /, (7)

wii«e o(m) is ^ uid<p» boumkd sduti<ra tA (7), Thus v{m) is tte
toilie<lbc(mitted stf^^ngproUemwithst(q)iH%reward m, T t o e
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PROPOSITION 2. For eadi state i, w, = pj. Also m^ is the unique sokition of
w, = r, + PfVi^m,) and i>' = o(m,) is n<mdecreasing in »i,.

4. Oiara^erizatiQii of ctmtiiHiirtioa and restartii^ sets. The optimal continuation
set C, (resp., optimal restarting set R,) for the restart-in-i problem is the set of states j
for which continuation (resp., restarting in i) is <^timal, i.e., for which /) + i»yw' - m,
is nominative (resp., nonpositive). Hie optimM stf^ping time in the r^tart-in-i
problem is the number of periods required for the $tate of the project to leave C,. Of
course one is indifferent between continuing and restarting for each state in C, n R,.
In particular, that is so of state i.

PROPOsrnoN 3. (Continuation and Restartii^ Sets: Gittins). For each state i, C,
(resp., Rl) is the set of states j for which mj > m, (resp., mj < m^).

PROOF. By (7), \\v(mj) - o(m,)||« < \mj - m,!, so \PjV{mj) - PjV{mt)\ <
a\mj - /M,|. Hence by (6), rj + PjV(mi) - m, > 0 (resp., < 0) if and only if mj - m^
> 0 (resp., < 0). •

Recall from Theorem 1 that a suffident condition for a policy to be optimal is that
the largest-index rule is used in each period in which a project is selected. Prcqwsition 3
assure that such a policy in fact u^s the largest-index rule in every period.

Propositicm 3 charactoizes C, and R, in terms of the value of the index m,. But
what can be said about those sets if m, is not known? To answer this questicm, supp<»e
that / is partially ordered by the relation < . A subset J of I is called increasing
(resp., decreasing) if J e / and / ^j (resp., i >j) in I implies that j e / . Call P
stochastically monotone ii Pv is nondecreasing on / whenever v is nondecreasing and
bounded on / . Define R, by (R,«)y s niax(;) + PjV, r^ + Pfi) tot each y e / and
bounded v. Observe that R, is a contrju^on wiUi modulus a, and that & is the unique
fixed point thereof. Also Rfiis monotone in v. The next result extends related work of
Gittins (1979) and Ross (1983).

PROPOSITION 4. (Monotone Continuation and Restarting Sets). If I is partially
ordered, r is nondecreasing and P is stochastically monotone, then vj and m, are
respectivefy nondecreasing in i, j and in i. Moreover, C, 2 Cy and R, c R^ /tw each
I < y in I, and C,- (rvsp., R,) is increasing {resp., decreasing) for each i in I.

PROOF. Hie hypotheses imply that R jV is nondecreasing on / if t) is. Thus since 0
is nondecreasing oa / , so is R'O and l im,^^R'O — v'. Now by hypothesis again,
v' = R ,D' < R ^i;' for I < * in / , so v' < hm,^Jk'fp' = p*, wbence o' is nondecreasing
in {. l l i e last two assotions fdlow frcHn Propositicm 3. •

5. Conqiarbcm ei eomfu/MaoaA BieAeds. Cmnptaation on-Une. It is interesting to
a ^ what indices must be ccnnputed a i ^ vhea. this must be done in order to implranrait
the Gittins-J<aies kigest-indei rule. In the first pmod, it is necessary to conqmte the N
initial indices of each projecL Subsequoatly, it sufllces to compute at iiK>st one index in
each period. In particular, (me c(»iq>utes the index of a project in a pmod whoi its
state first leaves the q>timal continuatk»i set of die project in die state and poiod of
its most-recrait prior sdec^um. Hius, by Pr<qx>dti(Bi 3, if the indices are a»iq>uted
on-line (Hily as needed, t l^ indices c(»B|>uted tot eadh project will decrease stricUy ova-
time.

Conqnaatkms in finite state spatxs. If tha% afe if < + oo states, then equatitni (S)
tax the restart-is-i proUem can be sdved by a vmety of ^a i ^a id D^IHXIS, e.g.,

ot Vmeea pn^paom^g. l a ip g ^
ing these metlKMis, it is amveaknt to disrave tiuit vj»- r, -i- P^t:^, so dutt cme cam
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j -«- PfV in (S) by Vj for many purposes. However, one must exercise some care
in that evrait because v' is mody tbe least scdution of the revised version of (S).

Policy improvement. Beale (1979) sugg^ted a method for finding Uw indices that
can be shown to be equivalmt to use of die policy inq>rovement method to solve the
restarting problems. Howev^, the standard in^emeatatioa of policy improvement
require only about one-half ibs computations required by Beale's implementation.

Largest-remaining-index method. Varaiya et al. (1985) use Prcq>osition 3 to
a method that first finds the index of a state with laigest index, then the index of a
state wi^ next largest index, etc. This largest-remaining-index method requires about
S^/3 multiplications and additions (and far fewer comparisons) if P is positive and at
least one-half that many if tte number of poative dements of P is O(S). In most cases
the lai^est-remaining-index method ^pears to be superior to both the standard
version of poUcy improvement and linear prc^rammiag. Actually, the largest-remain-
ing-index method finds the largest ind« less than the index m, of a given state / say,
provided that Ĉ  is known. This fact and the remark at the beginning of this section
suggest that the method will be especially useful if, when a project change state, the
index usually does not drop very far.

Successive approximations. However, it appears to us that successive approxima-
tions (or its Gauss-Sddel improvement) is a more effldoit way to solve the restarting
problems for large state spaces Uian is the policy improvement or larg^t-remaining-
index method. To see why, we show how to use successive approximations to find a
policy whose value is within 100£% (0 < c < 1) of S s /8 — a of the maximum value
where o < rj/(\ - a) < /3. We allow a, /S and r,, but not 8, to depend on the project,
but we suppress this d^)endence for notational simplicity. In view of Hieorem 1, it
suffices to show how to find a stopping tin» tw each project whose index is within
100e% of 5 of the index m, of the project in any state i. To that end, su|̂ K>se that one
has available an estimate u of & with the property that R,» < u and a ^ Uj ^ P for
all j (e.g., Uj = /8 for all y wiD do). Hien R^uiv' and DJ < 5/ < »j + «* for all j
where r' = (d) = Rfu and T is the least int^er majorizing hie/ln a because, ^nce R,
is a contraction with modulus a.

Now let C, be the continuation set of v', Le^ the set of states j such that i) -H Pju' > wl
where u' = Rj"~^«. Tliai, as above, &e value of C, (i.e., the value of the assodated
policy) in state i is at least »J - e8 > ») - c5 = m, - €8. The desired stepping time for
the project in state i is, of course, the numbo' of periods required to exit C, starting
from state i.

If the coiiq)utations are done on-line, then we must find a new j^proximate sttqjpii^
time for the project rally when the project alters a state J ^ Q. In that ev&xi
R o' < RjU' < RjU' '^ v', so that in iq[^ying siMxessive iq>iHoximatums, we can take
& as the initial estimate of vK Thus, v' > v\ so the successive approxunaticms of the
r^tarting values of a project diminish.

Rtmmng time. Widi succe^ve qqnoximatkms, if one has an estimate v of î  at
hand, oi» conqmt^ a new sspptamaa&oa v' = UfV by the ndes: 0/ == r, + P^v and
v< = max(.rj + PjV, 0/) tor j * i. Ck>nqwting each ^^ronmation oitails at mc^t M
ty>erati<ms, Le., multiiriicaticms, a^iiticms and amquoiscHis, vbeie Jlf is tl» numba of
nonzero doi^ i t s in P. Tims the numbo' of (xpaaikms needed to estimate a t i
time and ii^ex ffxt a i^oject in a state is at most TM < 7^^
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If we ^timate the stepping times and indices in advance for eadi state of eadi
project, the running tin^ of succe^ve approxiniations, measured in operations, is at
most NSTM. If instead we compute on-line, thai it suffices to estiniate an index and
supping time for eadi project In its state in poiod one and for at most one project and
in one state in aibsequent periods. Also any poUcy can be u ^ after period T. Thus,
when implemented on-line, the nuinii^ time of successive af^roximations is reduced
by about a factor of 5 to at most (N +T- 1)TM.

Since T is indq>endent of 5, it follows that when. Uie transition matrices are sparse
(so M — O(S)) or the computations are done on-line, successive approximaticms will
be m<H:e effident than the policy in:q>rovanait and largest-remaining-index methods
for large enough S because the last two methods still run in O(NS^) time (as they do
in general). On the other hand, if 5 is not too large and if both 1-a and c are very
small, then the largest-remaining-index method will be more effident than successive
approximations.

Another advant^e of successive ^>proximations is that its average running time is
often considnably l^s than that of its worst case. Hie reason far this is that one can
terminate before completing T a{^oximations if two successive approximaticms v'
and V are found for which ||D' - v\\ < €8(1 - a), because this assures that |m, - u/l <
eS.

These methods can also be used to approximate the indices in infinite-state prob-
lons.

We are grateful to Cyrus £>ennan, Josq>h Chang, Dimitri
Bertsd^as and the refa«es for helpful comments on this paper.
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