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Consider the problem of sequential sampling from m statistical populations to
maximize the expected sum of outcomes in the long run. Under suitable assump-
tions on the unknown parameters 0 € 0, it is shown that there exists a class C of
adaptive policies with the following properties: (i) The expected n horizon reward
v (9) under any policy 7° in Cy is equal to nyw (6) — M(8)log n + o(log n), as
n — w, where (@) is the largest population mean and M(8) is a constant. (ii)
Policies in Cy are asymptotically optimal within a larger class C g of * unlformly
fast convergent” policies in the sense that Timi—=(nu*(9) — V™ (9))/
(nu*(8) — V7 (9)) < 1, for any m < Cyr and any 9 € © such that M(g) > 0.
Policies in Cg are specified via easily computable indices, defined as unique
solutions to dual problems that arise naturally from the functional form of M(6).
In addition, the assumptions are verified for populations specified by nonparamet-
ric discrete univariate distributions with finite support. In the case of normal
populations with unknown means and variances, we leave as an open problem the
verification of one assumption.  © 1996 Academic Press, Inc.

1. INTRODUCTION

Consider for any a = 1,...,m the ii.d. random variables Y,,Y,;, j =

1,2,... with univariate den5|ty function f,(y, 6,), with respect to some

known measure v,, where 6, is a vector of unknown parameters

(8,4, 6, ). For each a, k, is known and the vector 6, belongs to some
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known set ©, that in general depends on a and is a subset of R*.. The
functional form of f,(-,-) is known and allowed to depend on a. The
information specified by (®,, f,(-,-), ,) is said in the literature to define
population a = 1,..., m. The practical interpretation of the model is that
Y,; represents a reward received the jth time population a is sampled. The
objective is to determine an adaptive rule for sampling from the m
populations so as to maximize the sum of realized rewards §, = X, +
X+ +X,_, n—> o where X, is Y, if at time ¢ population a is
sampled for the kth time.

In their paper [25] on this problem, Lai and Robbins give a method for
constructing adaptive allocation policies that converge fast to an optimal
one under complete information and possess the remarkable property that
their finite horizon expected loss due to ignorance (“regret”) attains,
asymptotically, a minimum value. The analysis was based on a theorem
(Theorem 1) establishing the existence of an asymptotic lower bound for
the regret of any policy in a certain class of candidate policies; see UF
policies below. The knowledge of the functional form of this lower bound
was used to construct, via suitably defined “upper confidence bounds” for
the sample means of each population, adaptive allocation policies that
attain it.

The assumptions that they made for the partial information model
restricted the applicability of the method to the case in which each
population is specified by a density that depends on a single unknown
parameter, as is the case of a single parameter exponential family.

The contributions in this paper are the following. (a) It is shown that
Theorem 1 holds, under no parametric assumptions, for a suitable unique
extension of the coefficient in the lower bound; see Theorem 1 (1), below.
(b) We give the explicit form of a new set of indices that are defined as the
unique solutions to dual problems that arise naturally from the definition
of the (new) lower bound. (c) We give sufficient conditions under which
the adaptive allocation policies that are defined by these indices possess
the optimality properties of Theorem 1 (2), below. (d) We show that the
sufficient conditions hold for an arbitrary nonparametric, discrete, univari-
ate distribution. (e) We discuss the problem of normal populations with
unknown variance, where we leave as an open problem the verification of
one sufficient condition.

We first discovered the form of the indices used in this paper when we
employed the dynamic programming approach to study a Bayes version of
this problem [6, 7]. The ideas involved in the present paper are a natural
extension of [25]; they are essentially a simplification of work in [8] on
dynamic programming.

Our work is related to that of [33], which obtained adaptive policies with
regret of order O(log n), as in our Theorem 1, for general nonparametric
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models, under appropriate assumptions on the rate of convergence of the
estimates.

Starting with [31, 3], the literature on versions of this problem is large;
see [24, 26, 22, 4, 15, 17-20] for work on the so-called multiarmed bandit
problem and [16, 29, 30, 1, 12, 27, 14, 5, 2, 28] for more general dynamic
programming extensions. For a survey see also [18].

2. THE PARTIAL INFORMATION MODEL

The statistical framework used below is as follows. For any population a
let (™, ™) denote the sample space of a sample of size n: (Y,;,...,Y,,),
1 <n <= For each 9, € 0,, let P, be the probability measure on Z®"
generated by f,(y, 6,) and », and P<’” the measure on %™ generated by
n independent replications of Y,. In what follows, P(”> will often be
abbreviated as P, . The joint (product) sample space for the m populations
will be denoted by (™, ™) and the probability measure on ™ will
be denoted by P;" and will be abbreviated as P,, where ¢ = (6,,...,6,) €
0:=0,X-X0,

2.1. Sample Paths—Adaptive Policies and Statistics

Let A4,, X,,t =0,1,... denote respectively the action taken (i.e., popu-
lation sampled) and the outcome observed at period ¢. A history or sample
path at time n is any feasible sequence of actions and observations during
the first n time periods, i.e., w, = ag, Xy, ...4a,_q, X,_. Let (Q, FM),
1 < n < =», denote the sample space of the histories w,, where Q™ is the
set of all histories w, and 7" the o-field generated by Q. Events will
be defined on ™ or on ™ and will be denoted by capital letters. The
complement of event B will denoted by B.

A policy 7 represents a generally randomized rule for selecting actions
(populations) based on the observed history, i.e., 7 is a sequence
{my, 74, ...} of history-dependent probability measures on the set of popu-
lations {1, ..., m} so that m7,(a) = 7 (a, w,) is the probability that policy =
selects population a at time ¢ when the observed history is w,. Any policy
m generates a probability measure on " that will be denoted by P, (cf.
[10], p. 47]). Let C denote the set of all policies. Expectation under a policy
m € C will be denoted by Ej. For notational convenience we may
use 7, to denote also the action selected by a policy 7 at time ¢.

Given the history w,, let T, (a) denote the number of times population a
has been sampled, 7, (a) = Y/Z¢ U, = a}. Finally, assume that there are
estimators 6@ = g (Y,,,... Y1 ) € O, for 6,. The initial estimates 6,
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are arbitrary, unless otherwise specified. Properties of the estimators are
given by conditions (A2) and (A3) below.

Remark 1. Note the distinction between the policy-dependent
(Q™, 7™, P;") and policy-independent (", %", P,") probability spaces,
see also [33] However, since 6/ is a function of Y,,,...,Y,; only, it is easy
to see by conditioning that the following type of relations hold, for any
sequence of subsets F,,; of O, n,j > 1.

Pgw (:B;T,,(a) € FnaT,l(a)’ Tn(a) =]) = Pﬁa (:0;/ € Fnaj)' (21)

Py (6 € Frur o) < Py, (8 € F

naj

for some j < n) (2.2)

2.2. Unobservable Quantities

We next list notation regarding the unobservable quantities such as the
population means u,, the Kullback—Leibler information number 1(6,, 6.),
the set of “optimal” populations, O(8) for any parameter value 6, the
subset A®,(6,) of the parameter space O, that consists of all parameter
values for which population a is uniquely optimal (henceforth called
critical), the minimum discrimination information for the hypothesis that
population a is critical K, (6), analogous quantities for u*(9) — e,
A® (0, ), and J,(6,, 6; ), for any & > 0, the set of all critical popula-
tions B(#), and the parameter space constant M(6) as follows:

(1) (a) M’a(_ea) = EQ”Ya!
(b) 108, 8;) = Ey 10g(fY,; 8,)/f.Y,; 8.)),
@ @ wp*=p)=max,_,
(b) 0(8) = {a: p, = ),
3 @ A0 0, &)=1{0, 0, u,0)>u*) — e}, fore>0,
() w,(6,, 2):=inf{I(6,, 6)): n,(6) >z}, ~ for —o <z < oo,
© 3.0, 0; &) = w0, w9 — &) = inf{l(g,, 6,):
0 € A0 6, &), fore=>0,
@ (@ A0,6,) = A0,00,0 =1{§ €0, u,6) > u(o)
(b) B(:O) ={a:a & O(:B) and AO,(0,) # I}, B
6 @ K80 =13/, 0,0 =inf{I(6, 6,): 6, € A0,(6,)},
fora € B(9), ~

(b) M(8) = X, cgo)( w*(8) — 1,(8,))/K,(0).
In the definition of M(§) we have used the fact that K (6) € (0,),

Ya € B(9) c O(8), which is a consequence of the fact that 1(6,, 6)) = 0
only when 6, = 6,.
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Under the assumptions made in[25] the constant K (6) reduces to
1(9,, 0*), thus giving the form for M(6) used in that paper.”

2.3. Optimality Criteria

Let V"(9) = EfYXr—4 X, and V,(9) = nu*(8) denote respectively the
expected total reward during the first n periods under policy 7= and the
optimal n-horizon reward which would be achieved if the true value 6
were known to the experimenter. Let R7(6) = V,(8) — V,"(8) represent
the loss or regret, due to partial information, when policy 7 is used;
maximization of V’T(B) with respect to = is equivalent to minimization of
R7(6).

In general it is not possible to find an adaptive policy that minimizes
R7(6) uniformly in 6) uniformly in 9. However, if we let g7(9) =
“ﬂn*fVﬂ-(_e)/n then Ilmn—m(V(G) — V”(e))/n = limu»=R7 (0)
w*(9) —g™(9) = 0, Vo.

A policy 7 will be called uniformly convergent (UC) or uniformly fast
convergent (UF) if Vo € ® as n — o, R”(O) = o(n) (for UC) or R"(H) =
o(n®), Ya > 0 (for UF).

A UF Pollcy 7% will be called uniformly maximal convergence rate (UM)
if Tim.-=R7'(§)/R7(6) <1, V6 € © such that M(9) > 0, for all UF
policies 7. Note that according to this definition a UM policy has maxi-
mum rate of convergence only for those values of the parameter space for
which M(6) > 0; when M(6) = 0 itis UF. Let C,c D Cr D Cyy denote
the classes of UC, UF, UM policies, respectively.

3. THE MAIN THEOREM

We start by giving the explicit form of the indices U,(w,) which define a
class of adaptive policies that will be shown to be UM under conditions
(A1)-(A3) below. Fora =1,...,m, §, € ©,,and 0 < y < «, let

U (6,,7) = sup {u(6,):1(8, 6;) < v} (3.1)

0.0

a a

Given the history w, and the statistics T,(a), §, = 6/ for 6,, define the
index U, (w,) as

Uy(@;) = U,(8,.log k/T;(a)), (3:2)

for k > 1; U (wy) = u,(6). We assume, throughout, that, when j = 0 in a
ratio of the form log & /j, the latter is equal to o.
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Note also that U,(w,) is a function of k, T\(a), and 6/ only and that
we allow Ti(a) = 0 in (3.2), in which case U((w;) = supy c o { 1,(6,)}; in
applications this will be equivalent to taking some small number of
samples from each population to begin with.

Remark 2. (a) Forall ¢ and w,, U(w,) > u,(6,), i.e., the indices are
inflations of the current estimates for the means. In addition, U,(w,) is
increasing in k and decreasing in T;(a), thus giving higher chance for the
“under sampled” actions to be selected. In the case of a one-dimensional
parameter vector, they yield the same value as those in [25, 23].

(b) The analysis remains the same if in the definition of U,(w,) we
replace log k/j by a function of the form (log & + h(log k)) /j, where h(¢)
is any function of ¢ with A(¢) = o(¢) as t — . Up to this equivalence, the
index U, (w,) is uniquely defined.

(c) We note that u,(6,, y) and w,(8,, z) are connected by the following
duality relation. The condition u(6,,y) >z implies w,(6,,z) <. In
addition, when for y = v,, the supremum in u(6,, y,) is attained at some
002 = 0°(y,) € O, such that 1(6,, 6°) = v, (as is the case, for example,
when w,(8) is a linear function of 6/), 6° also attains the infimum in
w,(0,, zo) for zy = u (6,, v,), i.e., u( u,yo)—,ua(f) )=2zy, and w,(0,, z,) =
100, Hao) = v, This type of duallty is well known in finance [32, p. 113]

(d) For z € R, let W(w,,z) = w,(67®, 2). It follows from (c) above
that Vw,, the condition U(w,) > z implies the condition W (w,, z) <
log k /T, (a).

Furthermore, when the supremum in u (8,109 k/T,(a)) is attained at
some 6° = 6% w,) € O, such that 1(8, 6) = log k/T,(a),

=a'=Za

U, (@) = m,(87), (3.3)
W, (@, 1,(82)) = 1(8,.62) = log k/T,(a)
= 3,( 8. 05 1%(0) — ma(02)). (3.4)

The conditions given below are sufficient conditions for Theorem 1 (2).

Condition Al. VY6 € O and Va & O(6§) such that A®,(6,,0) = & and
AO,(6,, &) # T, Ye> 0, the following relation holds: lim, _ ,3,(6,, 8; &)

= o0,

Condition A2. P,(16f — 6,ll > &) = o(1/k), as k — %, Ve >0, and
Ve, € 0,, Va.

Condition A3. P,(u, (0’ log k/j) < M(Qa) — g, for some j<k)=
o(1/k), as k — o, Vs>0 Vo, € 0,
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Remark 3. To see the significance of condition (A1) consider the next
examples.

ExampLE 1. Take m =2, ®, =[0,1], ©, =[0,.5], u*(6) = u(0,) =
0.5 > py(6,), f,(y;6,) =61 —6)* 2, x=0,1 -

ExampLE 2. Take ©®, = [0,0.51] in Example 1.

ExampLE 3. Take O, = 0, = [0,1], u*(8) = u(6,) = 1> u,(6,), in
Example 1. -

Situations such as in Example 1 are excluded, while Examples 2 and 3
satisfy (AL).

Remark 4. (a) Note that (A2) is a condition on the rate of conver-
gence of §* to 6, and it holds in the usual case that 9 is either equal to
or follows the same distribution as the mean of i.i.d. random variables Z;
with finite moment generating function in a neighborhood around zero. In
this case (A2) can be verified using large deviation arguments. This implies
that £;21 P, (16 — 6,1l > &) = o(log n), as n — .

(b) From the continuity of 1(6,, 6,) and, hence, of J (6, 6; £) in 6,, it
follows that the event {J,(6), 0; £) < J,(6,, 8; &) — 8} is contained in the
event {6 — 6, > n}, for some n = n(8) > 0. Thus, condition (A2) im-
plies P, [J,(8,, 0; £) < J,(6,,0; &) — 8] = 0o(1/k), as k — . The last can
be written in the form below, as required for the proof of Proposition 2 (a):
v6>0

X Pe{,[‘]a(@;kv_e; 6‘) < Ja(_Ga,g; 8) — 5] = o(log n) as n — oo.

Remark 5. Condition (A3) can be written as Y7} Pgu[ua(:e;", log k/j) <
w(8,) — &, for some j < k] = o(log n), as n — co. It is used in this form
for the proof of Proposition 2 (b).

Let Cy denote the class of policies which in every period select any
action with the largest index value U,(w,) = u(6,,log k/T,(a)). We can
now state the following theorem.

THEOREM 1. (1) For any 6 € O, a € B(9), such that K (0) # 0 the
following is true, Vm € C g, ~ B B

lim E5T,(a) /logn > 1/K,(8).

n— o
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(2)  If conditions (A1), (A2), and (A3) hold and 7° € Cy, then, V() €0
and Va & @(0)

lim E7 ' 7,(a)/logn < 1/K,(8),  ifa € B(8),

n— o

fim Ej'7,(a)/logn =0, ifa & B(9),

n— o

(b) 0<R™(H) = M(O)Iog n + o(log n), as n — o, Vo € 0,
(© Crc CU,\,I

Proof. Parts (1) and (2a) are proved in Propositions (1) and (2), respec-
tively.
For part (2b), note first that

m T,(a)
wi(0) - mre) - £ L v,

i( *(8) ~ m(8))EFT,(a),  VmeC,

Using the definition of M(9) in subsection 2.3, V7r° € C, V0 € 0,

Ii_ijjo(za)/Iogn <M(8),  (from part (2a));

n— o

hence, Cr < C . Thus, it follows from part (1) that

lim R7(2)/10g n > M(2).

n— o

and the proof is easy to complete, using the above observatlons
To show the last chain we need only to divide both R7 (6) and R”(O)
by M(0)Iog n, when M(O) >0 1

Remark 6. (a) It is instructive to compare the maximum expected
finite horizon reward under complete information about 8 (Eg. (3.5)) with
the asymptotic expression for expected finite horizon reward for a UM
policy 7°, under partial information about @ (Eq. (3.6)), established by
Theorem 1: -

V(€)= ni(6) (35)

V,,’To(g) = n,u*(ze) - M(:H)Iog n + o(log n) (as n — ). (3.6)
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(b) The results of Theorem 1 can be expressed in terms of the rate of
convergence of V7(6)/n to u*(6), as follows. If 7 & Cyc then
lim, ,.V"(8)/n = u*(9) for all 6. No claim regarding the rate of con-
vergence can be made. If = € C ¢ then it is also true that [V,7(6)/n —
w*(0)l = o(n®) for all 6 (and Va > 0); therefore V,7(6)/n converges to
w*(9) at least as fast as log n/n. The UM policy is such that for all § € ©
with M(8) > 0, the rate of convergence of V,7(8) to u*(8) is the maxi-
mum among all policies in C,r < C,,c < C, and is equal to M(9)log n/n.

(¢) For 6 € O such that M(9) = 0, it is true that 1/7'(8) =nu*(0) +
o(log n); therefore V" °(8)/n converges to w*(9) faster than log 7 /n.
However, this does not necessarily represent the fastest rate of conver-
gence.

In the proof of the Proposition 1 below, we use the notation 6, =
.., 0,1,6,6,,,,...,6,), Y0, = AO (6,), and the following remark.

Remark 7. (a) The definition of A®,(6,) implies that if a € B(9) #
@, then O(9,) ={a}, Vo, € AO,(9,), and thus Ej(n — T,(a)) = o(n®),
Va > 0 and V6§, € AO,(8,), V7 € C\, the latter belng a consequence of
the definition of C .

(b) Let Z, be i.id. random variables such that S,/n=Y! ,Z,/n,
converges a.s. (P) to a constant u, let b, be an increasing sequence of
positive constants such that b, — %, and let | b, | denote the integer part
of b,. Then max, _, {{S,}/b, converges as. (P) to p and

¥6>0, P max (5,)/b, >+ 5) —o(l) (asn— ).
k<l|b,]

ProrosiTION 1. If m € C\ then, for any a € B(8) + &,

lim E5T,(a) /logn > 1/K,(8). (3.7)

n— o

Proof. The proof is an adaptation of the proof of Theorem 1 in [25] for
the constant K (6). Form the Markov inequality it follows that

P (T,(a)/logn = 1/K,(8)) < EfT,(a)K,(8)/logn, ~ ¥n > 1.
Thus, to show (3.7), it suffices to show that

lim By (T, (a) /log n = 1/1,(8)) = 1
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or, equivalently,
lim By (T,(a)/logn < (1 - £)/K,(8)) =0, Ve>0. (38)
n—>ow = -_—

By the definition of K (8) we have, ¥5 > 0, 39, = 6,(8) € A®,(6,) such
that K () < 1(6,, 8)) < (1 + 8)K (8).

Fix such a 8 > 0 and 0, let 15 = 1(6,, 6)), and define the sets A° =
{T(a)/log n < (1 - 8)/1°t and C?:={log Ly ,, < (1 - 5/2)Iog n},
where log L, = X¢_, log(f(Y,;; 8,)/f, (Yal, o).

We will show that P7(A) = PT(ASCY) + PT(ALCY) = o(1), as n — o,
V& > 0. Indeed, P’T(A5C ) < n'T/%pT (ABC ) < ntTPPRI(AY) <

nt=?/2Eq(n — T(a))/(n — (1 — 8)log n/IB) = o(n") /(n°/*(1- O(Iog n)/
n)) = 0(1) fora < §/2.

The first inequality follows from the observation that on C2 N {7 (a) =
k} we have fa(Yal;_Oa) fa(yak; _Oa) < nlia/zfa(yal; _011,) fa(Y:zk; _9;)’ note
also that e~ 2/2l09n = »1-8/2 The third relation is the Markov inequality
and the fourth is due to Remark 7(a)) above.

To see that P’T(A8 C2) = o(1), note that

n n

Py (ACY) < Pg”( max {Iog L,} > (1-6/2)log n)

= P(;T( max {log L.} /b, > 1°(1 + 8/(2(1 — §)))
= \k<lp,l

< Pea(kmﬁ)x {log L} /b, > 1°(1+ 8/(2(1 - 8))),

=1%

where b, == (1 — §)logn/1° and the last inequality follows using an
argument like that in Remark 1. Thus the result follows from Remark 7(b),
since log L, /k — 1° as. (P)).

To complete the proof of (3.8), it suffices to notice that the choices of &
and 6/(8) imply (1 — 8)/1°> (1 — 8§) /(1 + K () > (1 — &) /K (),
and P/ (T,(a)/logn < (1 — &)/K (0)) < P7(A%) =o0(1), when &</

2-2. 1

To facilitate the proof of the Proposition 2 below we introduce some
notation and state a remark.
{For any € > 0, let

TP (a, &) = :gil(wk =a,U, (o) > p*(0) - ‘9)’
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and

TO(a, ¢) = Ti-ii(m, = a,U,( ) < p,(8,) — ¢).

Remark 8. Let Z, be any sequence sequence of constants (or random
variables) and let ¢, == X¥-} 1{Z, = a}. This definition of ¢, implies that
(pointwise if we have random variables)

n—1
Y UZ, =a,ty,<c} <c+1.
k=1
Indeed note that X} _ 1{Zk a, tp, =i} <1, Vi=0,...,|c]|. Therefore,
tUZ =a, 1, < c} Yoz, =a 1, =i} = Zl” Yotz =

a, tk—z}s[cj+150+1
PROPOSITION 2. For any 0 € O the following are true:
(@ Under (A1) and (A2), if ° € C, and a & O(0), then
lim Tim E7 T®(a, ) /logn < 1/K, (6), ifaeB(g), (39

=20, 50 =

lim Tim E7°7,"(a, &) /logn =0, ifa¢B(9).  (3.10)

£20 50 =
(b) Under (A3), if m° € Cy, then Ilmn—mE’T ‘T®(a, £)/logn = 0, Va
and Ye > 0.
(c) Under (A1), (A2), and (A3), if m° € Cy, then ﬁﬁnamEg T (a)/log n
is less than or equal to 1 /K (8), if a € B(9) and it is equal to 0,ifa & B(6).

Proof. (a) fix 71°€ Cy, 0 €0, a & O9), ie., u* > u,6,). Let e €
0, p* — u,(6,)), and consider two cases.

Case 1. There exists g, > 0 such that A®,(6,, &,) = . For any ¢ < g,
and any 6, € 0, it is true that u,(6,) < M*(e) — & < ;u*(@) — &; there-
fore, T(l)(a g) =0, for all £ < g, and (3.10) holds.

Case 2. A0/, &)+ I, Ye> 0. Note that J (6, 60;¢) >0, Vee
O, w* — u6)). Let . = J3.(6,, 0;)and I, = J (7@, 0 g); then, V& >
0, we have sample path wise:

n—1

T®(a,e) < ¥ A(wf =a,J, < log k/T;(a))

IA

= Y Y= =a,J, <logk/T(a),3, >3, — 8)

+ X Y7 = a,3, <log k/Ty(a),3, <3, — 8)
k=1
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n

-1
Y7 =a,T(a) <logn/(J, - §))
-1

<
k
n—1 =
+ Y Y7l =a,J, <3, ~9)
k=1
n—1 =
<logn/(J,=8) +1+ ¥ 1m=a,J, <J, - 8).
k=1

For the first inequality, we have used an immediate consequence of the
“duality” relations of Remark 2(c) with z, = u*(8) — &, which imply that
the event {U (w,) > u*(8) — &} is contained in the event {J (67, g; &) <
log k/T,(a)}. For the last inequality, we have used Remark 8. -

Taking expectations of the first and last terms and using remark 4(b), it
follows that, since & is arbitrarily small, E7 7"(a, &)/logn <1 +
log n/3,(6,,6; &) + EF'[Li-H(m) = a, 3, < J, — 8)]. In addition,

E| X 1(m)=a,d,<J,—3)

k=1
T,(a) .

=E§O[ l(Ja(Qaf,Q;e) <J8—6)]
j=0 B
n—1 -

<E§o[ 1(Ja(gaf,g;g) <J8—6)l
j=0 -

< Egu[nill(Ja(@,g; a) <J, - 6)] =o(log n),

j=0

where the second inequality follows from Remark 1 and the last equality
follows from Remark 4(b). Therefore, EJ'T"(a, )/log n < log n/
J,(8,,0; &) + o(log n). -

Thus the proof of part (a) is complete since lim, _, ,J,(6,, 6; &) = K,(6),
if A®,(0,,0) # J, from the definition of K (6), and lim,_,,J,(8,, 8; &) =
o, if A®,(6,,0) = ), from (AL). B B

(b) Note first that for 7w° € Cg, the following inequality holds point-
wise on Q:

n—1
T®(a, &) < Y, 1(ua*(_5g*,log k/j) < w*(9) — &, for some j < k),
k=1 =

@

Va* € O(:G) Vo
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Indeed, T(a, &) = X{_1 Um? = a, U(w,) < u*(8) — €), and, since 7 €
Cr, the condition 7 = a implies that U,(w,) = max U, (w,) = U.(w,);
thus, the event {m? = a, U,(w,) < pw*(9) — &} is contained in the event
{U(w) < p*(8) — &}, for any a* € O(9). The latter event is contained
in the event {u .(8/, k, j) < u*(8) — &, for some j < k)}. Therefore, using
also (2.2), -

n—1

Ey T,P(a,2) < ¥ Py (U(B.k, j) < w*(8) -

for some j < k) = o(log n),

by Condition (A3).
The proof of (¢) follows from (a) and (b) when we let ¢ — 0, since
T(a) <1+ TMa, &)+ T a,e),Vn=>1Ve>0. 1

4. APPLICATIONS OF THEOREM 1

4.1. Discrete Distributions with Finite Support

Assume that the observations Y,; from population a follow a univariate
discrete distribution, i.e., f,(y,p,) = Py, =y} y €S, ={ra. .. 704},
where the unknown parameters p,, arein @, = {pa e [Rd Poy >0, Vy =

d, X,p,, =1}, and r,, are known. Here we use the notation

Qa =£)a, O=p= (pl,...,Pm) and y, is the counting measure on
{rall""ud} -
Thus we can write 1(p,,q,) =X lpc,ylog(pay/qay) mp,) = =

Zy layPay, w* = w*(p) = max fr; p} AO,(p, &) = {9, pld,) > w (To)
£}, where r/, denotes the transpose of the vector r,. Note that computation
of the constant K (p) as a function of p involves the minimization of p

involves the minimizatin of a convex function subject to two linear con-
straints; hence,

d,
K.(p) = Wa(pa, u*(p)) = min {l(_pa,qa): rd, = w*(p), X g
LA 2 =

(4.1)

For any estimators P, of p,, the computation of the index U,(w,) involves
the solution of the dual problem of (4.1) (with p, replaced by ) in (4.1)),
which, in this case, is a problem of maximization of a linear function
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subject to a constraint with convex level sets and a linear constraint; hence,

Ua( wk) ua(ﬁ;l IOg k/t)

dﬂ
max {r,q,: 1(p}.q,) < logk/t, ¥ q,, =1). (42)

(11129 y=1

In Proposition 3 below, it is shown that Conditions (A1), (A2), and (A3)
are satisfied for estimators defined from the observations from population
a. Given wk with T,(a) = t define:

1 Fort=1nly;a) = ;:1 1(Yaj = ra‘y), f(y;a) = n,(y;a)/t and
fla)=1[f(y; a0l cs.

(2 For t>0 let p,, =@ —-w)/d, +wf(y a), where w, =
t/(d, + 1), and let p, =[P, ,], < -
In the proof of Proposition 3 we make use of the following quantities and
properties:

(1) Fora=1,...,mand P.: 41,9, € 9, let /\(Pa;cll,clz) = I(_pa,clz)
- I(Pa’cll) = ZyESa paylog[qu/qu—]'

(2) Let Afq;,q,) = n;=1(11,ya/-/(12,ya/-

(3) Forp, €0, let F,(p,)={q< 0, Ip,q < log k/1}.

Note that U,(w,) = sup{r,q: q € F; 1"}

Remark 9. (a) log A(q;,9,) = Mf(a);q;,q,).

(b) supg,A(p,;dy,0,) = AMp,; P, ) = 1P, G).
(C) etl(fz(a): [lz) — et)\(fz(a); f(a), Clz) — SqulAt(Cllv q_z)

() £-A@;; a1, d,) = wlbay, 9,) + Af,(a); a;, ;)] where b(q,, 4,) =
L, loglla,/dz,} " o o o

(e) 1P, q,) < wlby(q,) = tI(f(a), q,)], where by(q,0
—-X,logq,,. - - -
Indeed, (a) follows from the observation that

t
log A,(9;.9,) = )y IOg[(ll,Y,,j/(lz,Y{,j]
j=1

2 1(Y,; = y)log[d,/ 0y, |

HMN

J

= iA(f,(): 0, ;)-
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(b) is a restatement of the information inequality =1(p,,q,) < 0. (©
follows from (b). To see (d) and (e), recall that p!, = (1 —w,)/d, +w, -
f.(a), where w, = t /(¢ + d); note that #(1 — w )/d = w,, and use (a) (for
(d)) and (b) (for (e)).

PROPOSITION 3. The discrete distribution model satisfies Conditions (Al),
(A2), and (A3) of Theorem 1.

Proof. (1) It is easy to see that Condition (Al) holds. Indeed, note
that that Ve > 0, AO®,(p; £) # Jif and onIy if max, *(p) — &. Thus

if AO,(p, &) # T, Ve> 0 and AO,(p) = then max r,y = #*(p) and

y-ay
lim,_ ,J(p,,p; &) = I(p,,q,) = =, where q, is the unit vector of R, with
nonzero component corresponding to max,r,,
(2) We next show that Condition (A2) holds. Since 1 —w, — 0, it
follows from the definition of P, , that for any & > 0 there exists #,(¢) > 1
such that

&
P [Pl = Puyl > ] < Pp“[lf,(y; a) — p,,l > Sl Yzt
Because f,(y;a) is the average of i.i.d. Bernoulli random variables with
mean p,,, it follows from standard results of large deviations theory (cf.
[11; 9, p. 27]) that P, [f (y;a) — p,,| > &/2] < Ce™"" for some C,y > 0;
therefore, for ¢ > t,(¢), P, [P, , — p,,| > €] < Ce™"" = 0o(1/1).

(3) To show that the ‘model satisfies Condition (A3), we must prove
that P, [Uf_, By, ] = o(1/k), as k — =, Ve > 0, Va, where B, = B, (a, &)
= {u,(p;,log k/t) < u,(p,) — &}.

On the event B,, it is true that w,(q) < u(p,) — &, Yq € F,, ().
Therefore, B,, € B,,, where Bj, = {u, (@) < n,p,) — &, Vq e F, Q)
thus it suffices to prove that £{=¢ P, [B;,] = o(1/k).

From Lemma 1 it follows that for & > 0 sufficiently small, there exists a
probability vector q° = q°(e) € 0, such that u(q®) = u (p,) — & and {a:
m@) < pp,) — e} =1{a: Aa;p, g d°) < —c,), where c, = =1@° p,).

Hence, By, C Bj},, where B}, = {A(q P9 < —c,, Vg & Fkr( )} and it
is sufficient to prove that Ef:ol P, [Bi]= o(1/k).

On the event By, the following are true. First, since P, € F,,(®,), it
follows that A(®; p,,q°) < —c,. Second, since A(Q°;p,,q 0) = —c,, it fol-
lows that q° & F,,(B}), i.e,. I(®;,q") > log k/z. Therefore, B gB}g’t,where
B}, = {)\(pa, P, 4% < —¢,, 1@, q" > log k/t}. Let I(q°) =
maX, c o 1(g,9°%) = max yes Ioglqyl < oo,

For ¢ <Tog k/I(qO) it is true that I1(®},q") < I(q°) < log k/t; thus
B, = &. Therefore in order to prove the proposition, it suffices to show
that Xr-1 llog k /) Po. [B},] = o(1/k). This follows from Lemma 2 (2); thus
the proof is complete. |
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LeEmmA 1. For any p, € ©, and & > 0 sufficiently small, there exists a
vector Q°(&) € O, such that u(q°(&)) = p,(p,) — & and{q € 0, p, (@) <
1 p) — &) = {q € 0,2 Ma; p.q%(e)) < —1(@°(e), Pk

Proof. For v > 0 define §(») € S, as follows: G (») = p,,e” "™ /b(v),
where b(v) = ¥, .5 P,y ~rTy, We prove that for aII g > 0 there exists
v=v(e) > 0 such that H (&) = H(v(&)), where H,(&) = {q w () =
©p,) — &t H() ={q Mg p,, G») = —¢,} and ¢, = —AGw);
pa,q(v)) = 1@(»), p,). Indeed, for all &,»>0, H,(n) and H,(v) are
parallel hyperplanes, since by construction of q(v),

AMa;p,.8(»)) = X a,log

yES, ' q;l(y)

=v ) q,r,, +logb(v) = wu,(q) + logb(v).
yES,
In addition, g(v) € Hy(v), since A@G(»); p,,G(»)) = —1@(v),p,) = —c,
Hence, for H, (&) = H\(v(¢)), it suffices to choose v(£) such that
glv(e) € H, (8) i, w,@(v(e) = p,p,) — &
Forv=20 |t is true that »(0) = 1 and q(O) = p,; thus, u(@0) = p,(p,).

AS v — oo,

pay/zz: rl,Z:eraz’ If ray =
0, otherwise -
where r? = min_r,,. Thus, as » = %, u (G(v)) = w, =r’ < u(p,).

Therefore for any & < (p,(p,) — ,u,w) ‘there exists v(g) > 0 such that
r@(v(£) = p,(p,) — &, because Ma(q ) is continuous in .

Let H, (&), H, (&), H, (v), H,"(v) denote the corresponding half-spaces
of H, HA, ie. H, (s) a0 p (@ < wlp,) — &}, etc. To prove that
H, (s) Hy (v(e)) it suffices to show that p, € H,(¢) and p, €
H+(v(a)) The first is immediate, while for the second we note that
Mp,; ., G(v(e)) = 1(p,, G(v(£)) > 0 > —1@(v(e)),p,). Thus the lemma
follows with ¢°(s) =TG(v(s)). |1

Lemma 2. (1) Vp,,q€ 0, Ve, d >0, and Vb, b, € R
k-1

Y Py [A(F(a)ip,a) < —c + by/t, 1(f,(a).q) > log k/t + b,/
t=|d log k|
=0(l/k), as k — o,

(2) Ve,d > 0 and P4 € 0,
k—1

Y [’\(Pa pa,(l) < —c, I(_pa,(l) > log k/t] =o(1/k),

t=|d log k|

A(v) = G(=) =

ask — oo,
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Proof. (1) The proof is an adaptation of Lemma 2 in [25]. From
Remark 9(b) it follows that, for all %, ¢,

PBa[/\(ft(a);Pa,cl) < —c+by/t,1(f(a),q) > log k/t + bz/t]

g [ (Pa, Q) <e’e™, supA,(p,q) > ebZk}
p

After a change-or-measure transformation between p, and g we obtain

P£"'|:At(£)a,(1) <ehe ', supA,(p,q) > ebZk}

<ebe P, [supA,(p q) > ek|. (4.3)

Since O, is subset of a compact set, for any 6 > 0 there exists M < o and
a finite collection of vectors g’ € ®,, and neighborhoods .#(8), i =
1,..., M, such that U,.#(8) 2°®,, and .#(8) = {p € 0,: Ilp — q(”ll < 8}

For all i =1,.. M and y eSa, it is true that suppe/,,(s)py/qy <
@) +8)/q,; thus

O +
£, sup | <E |2 =1+18,/5.
| persis) Ay, 1 Gy,

Therefore for any & > 0, selecting & < ¢/|S,l, we obtain
Etl[supge/,,i(ﬁ)pya/qya] <14+ e&i=1,...,M, and thus

Pq[ sup A,(p.q) >eb2k}
| pesis

e—bzk—lEq[ sup Az(P:(D}
" pesi®

t
sup Pr, ) <e P2k Y1+ &), (4.4)
| pesis) Ay,

e bef?t

where the first inequality follows from the Markov inequality, the second
from the observation that suppe/,/(é)A (p Q < H,Hsuppema)py /Ay, s
and the third from the fact that Y i=1..., ¢, are i.i.d.
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Combining (4.3) and (4.4)

Ppa[At(Pa’(l) <ehe 8cu', supA,(p,q) > ebZk}
) p

M
<ehe Y P| sup A,(p.q) > e’k
|pesy T

i=1
< Me" b2kt cl(1 + £)'.
Selecting £ so that e “(1 + &) < 1, we obtain
k
Y Pga[Ar(Pa’(l) <be™, sup A,(p,q) > b,k
|

pe0B,

o

SM,k_l Z (e—c(l + 8))[ SM,k_l_d(c_IOg(l+€)),
t=|dlog k|

where M’ = Me®1"b2/(1 — e ¢(1 + &)).

Since d > 0 and ¢ — log(1 + &) > 0 by selection of &, it follows that
—1 —d(c — log(1 + £)) < —1, and the proof is complete.

(2) From Remark 9(c), in the event {A(;p,, @) < —c} it is true that
w,(b(p,, P + tA(f,(a); p,, @) < —ct; therefore, since 0 <w, <1, b(p,, Q)
+tMf (@), p,, @) < —ct/w, < —ct.

Also, in the event {I(P,,q) > log k/t} it is true that w,(by(q) +
t1(f (a), @) > log k; therefore, since 0 <w, <1, by(q) + tI(f(a), @ >

log k/w, > log k.

Hence,
k
Y p[alptipna) < e q) > g/
t=|d log k|
k
= L PR[Mf(a)ip,a) < —c ~ b(R,. @) /1 1(Fi(a) . q)
t=|dlog k|

> log k/t — by(a) /1],
and the result follows from part (1), with b, = —b(p,,q°) and b, =
_bo(q_o)- I
4.2. Normal Distributions

Assume that the observations Y,; from population a are normally

distributed with unknown mean u, and known variance 2, i.e., §, = u,,
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and that O, = (-, »). Given history w,, define Azl =
&Y, )/ Ti(a).

From the definition of 0, it follows that A® (9) = (u*(0),»); there-
fore, B(#) ={1,...,m}, V6 € O. Also it can be seen after some algebra
that K_(9) = (1/2)Iog(1 + (w0 — u)?/a?) and U(w,) = <@ +

aTk(m(eZIog k/T@ _ 1)1/2 = Aama) + &7 O(k2 /T (a) — DV2.

Therefore, Condition (A1) of Theorem 1 holds. Condition (A2) follows
from standard large deviation arguments. Condition (A3) follows from an
inequality for the tails of the normal distribution (cf. [13, p. 166]). There-
fore, any index policy in Cp is UMCR.

For details and variations of this model see [25, 23, 21].

4.3. Normal and Discrete Distributions

Assume that 3m, < m such that:

(1 For a=1,....,my, Y, are normally distributed with unknown
mean w, and known variance o2, i.e., 6, = u,, and 0, = (— o, ).

(2) Fora=m; +1,...,m,Y,; follow discrete distribution with known
support S, = {r,,,..., rada} and unknown parametersp, € ©, = {p, € R
P, >0,Vy=1,...4d,%p,, =1 -

In this case B(8) ={1,...,m} U{a > m;: maxr,, > p*(9)}.

Conditions (A1), (A2), and (A3) are satisfied. Indeed, they have been
verified separately for a > m, in subsection 4.1 and for a < m, in subsec-

tion 4.2. Thus any index policy in Cg is UM.

4.4. Normal Distributions with Unknown Variance

Assume that Y are normally distributed with unknown mean w, and
variance o2, i.e., 8, = (u,, o), and that ®, = {0,: u, € R, o > 0}.

Given hlstory a)k, define 91 = (@ TA(“) &‘ZT”“q) where @lx@ =
VT (@S9 Y, 57 = s3(T(a) = 1/Tk(a)2Tk<a>(Y AR

From the definition of ®, it follows that A® (_6) #* @ Vo € O; there-
fore, B(9) = {1,...,m}, V8 € ©. Also it can be seen after some algebra
that K (9) = (1/2)Iog(1 + (u ) — w)?/0?) and U(w,) = @l +

aTk(a)(e2 log k / Ty(a)_ 1)1/2 = AZ}((“) _|__ (’,-‘aTk(a)(kZ/ Ti(a) _ 1)1/2.

Therefore, Condition (A1) of Theorem 1 holds. It is easy to to see that
(A2) holds, using large deviations arguments. However, we have not been

able to prove that (A3) is satisfied, so this remains an open problem.
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