ON LARGE DEVIATIONS PROPERTIES OF SEQUENTIAL ALLOCATION PROBLEMS

APOSTOLOS N. BURNETAS

Case Western Reserve University

MICHAEL N. KATEHAKIS

Rutgers University

ABSTRACT

Let $Y_{kt}, t=1,2,\ldots, k=1,\ldots, r$ be r sequences of i.i.d. random variables and $\overline{X}_n=1/n\sum_{k=1}^n Y_{A(k),t_{A(k)}}$ the sample mean of an n-size sample, given an adaptive allocation rule $\pi=\{A(t), t=1,2,\ldots\}$. We show that if $E[e^{\theta Y_{kt}}]$ is finite in a neighborhood of $\theta=0$, then, for all adaptive rules π , $\overline{\lim}_{n\to\infty}1/n\log P^{\pi}[\overline{X}_n\in C]\leq -\inf_{x\in C}I(x)$, for all closed sets $C\subset\Re$ and $\underline{\lim}_{n\to\infty}1/n\log P^{\pi}[\overline{X}_n\in O]\geq -\inf_{x\in C}J(x)$, for all open sets $O\subset\Re$, where I(x) and J(x) are rate functions independent of π .

1. INTRODUCTION. Consider statistical populations E_1, \ldots, E_r . With each E_k is associated a sequence $\{Y_{kn}, n = 1, 2, \ldots\}$ of i.i.d. random variables representing outcomes or samples from population E_k . A sequential or adaptive allocation rule π is a sequence of probability measures on appropriately defined probability spaces (c.f., Dynkin & Yushkevich (1979)), which specify the probability of selecting a population at time t, given the previous history of selections and outcomes. Typically the selection is made in such a way to maximize some measure of performance, such as the expected sum of the outcomes, etc..

Let the random variables A_t , X_t denote the population from which a sample is taken at time t and the outcome of the t^{th} sampling, respectively. Let $S_n = \sum_{t=1}^n X_t$, $M_n^{\pi}(\theta) = E^{\pi}[e^{\theta S_n}]$, and $c_n^{\pi}(\theta) = 1/n \log M_n^{\pi}(\theta)$. In this framework $c_n^{\pi}(\theta)$ does not necessarily converge as $n \to \infty$ (see example 1 below).

The lack of convergence of c_n^{π} implies that the sufficient conditions for the large deviations property (cf. Ellis (1985)) do not hold. Nevertheless, in this paper we show that a large deviations type property holds for the sequence X_n . Specifically, we prove that there exist upper and lower bounds for the exponential decay of the large deviation probabilities, which are independent of the form of the allocation rule π . However, the upper and lower bounds do not coincide. This is the reason that we call this result a large deviations type property.

 PROOF OF THE LARGE DEVIATIONS PROPERTY. Let F_k denote the common distribution of Y_{kn} , $\mu_k = \int x dF_k(x)$ the corresponding mean, $M_k(\theta) = \int e^{\theta y} dF_k(y)$ the moment generating function and $c_k(\theta) = \log M_k(\theta)$. Without loss of generality we assume that $\mu_k \ge 0$, $\forall k = 1,...,r$ (if not true, we can add a sufficiently large constant to all random variables Y_{kn} without changing the probabilistic properties of the problem). For notational convenience we also assume that $\mu_1 \le \mu_2 \le ... \le \mu_r$. Let Q_n^r denote the probability distribution of the history of selections and outcomes up to the first n samples, $H_n = (A_1, X_1, \dots, A_n, X_n)$ under allocation rule π and Q^{π} the distribution of the complete history $H = (A_1, X_1, ...)$. Also let P_n^{π} denote the probability distribution of \overline{X}_n under π , where $\overline{X}_n = S_n/n$. If π is stationary (i.e., at any step the selection probabilities are independent of past history and current time) then, $\{X_t, t = 1, 2, ...\}$ is a sequence of i.i.d. random variables with distribution $F^{\pi} = \sum_{k=1}^{r} \pi(k)F_k$. Therefore, $\overline{X}_n \rightarrow \mu^{\pi} = \sum_{k=1}^{r} \pi(k)\mu_k$, almost surely, as $n \to \infty$. In addition, $c_n^{\pi}(\theta) = c(\theta) := \log \left(\sum_{k=1}^r \pi(k) M_k(\theta) \right)$, thus $c_n^{\pi}(\theta)$ converges as $n \to \infty$ for all θ , and a large deviations property holds for P_n^* , with rate function $I(z) = \sup_{\theta \in \mathbb{R}} (\theta z - c(\theta))$ (cf. Ellis (1984)). Specifically, for all closed sets C and open sets O, it is true that

$$\overline{\lim}_{n\to\infty} \frac{1}{n} \log P_n^{\pi}(C) \le -\inf_{x\in C} I(x), \quad (2.1)$$

$$\lim_{n\to\infty} \frac{1}{n} \log P_n^{\pi}(O) \ge -\inf_{x\in O} I(x). \quad (2.2)$$

However for nonstationary allocation rules, $c_n^{\pi}(\theta)$ need not converge. In particular, consider the following example.

Example 1. Let r = 2 and consider an allocation rule π_0 , which takes 2^0 samples from E_1 , 2^1 from E_2 , 2^2 from E_1 and so on.

At the end of the $(2k)^{th}$ group of samples π_0 has taken $\sum_{i=0}^k 2^{2i} = (4^{k+1} - 1)/3$ samples from E_1 and $\sum_{i=0}^{k-1} 2^{2i+1} = 2(4^k - 1)/3$ samples from E_2 , for a total of $n_{1,k} = 2(4^k) - 1$. Similarly, at the end of the $(2k+1)^{st}$ group the number of samples from E_1 and E_2 is $(4^{k+1} - 1)/3$ and $2(4^{k+1} - 1)/3$ respectively, and the total $n_{2,k} = 4^{k+1} - 1$.

Since the populations are independent, we find that

$$c_{n_{1,k}}^{\pi_{0}}(\theta) = \frac{1}{n_{1,k}} \left[\frac{4^{k+1} - 1}{3} c_{1}(\theta) + \frac{2(4^{k} - 1)}{3} c_{2}(\theta) \right]$$

$$= \left[\frac{4^{k+1} - 1}{3(2(4^{k}) - 1)} c_{1}(\theta) + \frac{2(4^{k} - 1)}{3(2(4^{k}) - 1)} c_{2}(\theta) \right]$$

$$c_{n_{2,k}}^{\pi_{0}}(\theta) = \frac{1}{n_{2,k}} \left[\frac{4^{k+1} - 1}{3} c_{1}(\theta) + \frac{2(4^{k+1} - 1)}{3} c_{2}(\theta) \right]$$

$$= \left[\frac{4^{k+1} - 1}{3(4^{k+1} - 1)} c_{1}(\theta) + \frac{2(4^{k+1} - 1)}{3(4^{k+1} - 1)} c_{2}(\theta) \right]. \tag{2.4}$$

The two subsequences $c_{n_{1,k}}, c_{n_{2,k}}$ have in general different limits as $k \to \infty$ ($2/3 c_1(\theta) + 1/3 c_2(\theta)$ and $1/3 c_1(\theta) + 2/3 c_2(\theta)$, respectively), thus, $c_n^{\pi_0}$ does not converge.

In the remaining of this section we show that, in spite of Example 1, P_n^{π} satisfies a large deviations type property, with generally different rate functions for the upper and lower bound. Before we prove the main theorem we introduce some definitions and intermediate results.

Let $I_k(z) = \sup_{\theta} (\theta z - c_k(\theta))$ be the Legendre-Fenchel transform of $c_k(\theta)$. Lemma 2.1 below summarizes some well known properties of $c_k(\theta)$ and $I_k(z)$, It is a restatement in our notation of Lemma 2.2.5 of Dembo & Zeitouni (1993).

Lemma 2.1 1. $c_k(\theta)$ is convex in θ and $I_k(z)$ is convex in z. Also $I_k(z) \geq 0$, with equality if and only if $z = \mu_k$.

2. If $c_k(\theta) < \infty$ for some $\theta > 0$, then $\mu_k < \infty$ and for all $z \ge \mu_k$

$$I_k(z) = \sup_{\theta > 0} (\theta z - c_k(\theta)). \tag{2.5}$$

Similarly, if $c_k(\theta) < \infty$ for some $\theta < 0$, then $\mu_k > -\infty$ and for all $z \le \mu_k$

$$I_k(z) = \sup_{\theta \le 0} (\theta z - c_k(\theta)). \tag{2.6}$$

3. $c_k(\theta)$ is differentiable for all θ such that $c_k(\theta) < \infty$. Moreover, if $\theta_k(z)$ is defined as the solution of $c'_k(\theta) = z$ in θ , then,

$$z = \frac{\int x e^{\theta_k(z)x} dF_k(x)}{\int e^{\theta_k(z)x} dF_k(x)} , \qquad (2.7)$$

$$I_k(z) = \theta_k(z) \ z - c_k(\theta_k(z)) \tag{2.8}$$

and $\theta_k(z) \geq 0 \ (\leq 0)$ for $z \geq \mu_k \ (\leq \mu_k)$, with equality if and only if $z = \mu_k$.

Define

$$\overline{c}(\theta) = \max_{k=1,\dots,r} c_k(\theta) \tag{2.9}$$

$$\underline{c}(z) = \min_{k=1,\dots,r} c_k(\theta_k(z)) \tag{2.10}$$

$$\overline{\theta}(z) = \max_{k=1,\dots,r} \theta_k(z) \tag{2.11}$$

$$\underline{\theta}(z) = \min_{k=1,\dots,r} \theta_k(z) \tag{2.12}$$

$$I(z) = \sup_{\theta} (\theta z - \overline{c}(\theta)) \tag{2.13}$$

$$J(z) = \begin{cases} \overline{\theta}(z) \ z - \underline{c}(z) &, \quad z \ge 0\\ \underline{\theta}(z) \ z - \underline{c}(z) &, \quad z \le 0 \end{cases}$$
 (2.14)

I(z) and J(z) are the rate functions for the upper and lower bound in Theorem 2.3. Lemma 2.2 states their properties.

Lemma 2.2 1. $I(z) \ge 0$ for all z, with equality if and only if $\mu_1 \le z \le \mu_r$. Moreover I(z) is nondecreasing for $z \ge \mu_r$ and nonincreasing for $z \le \mu_1$.

2.

$$I(z) \le \min_{k} I_k(z) \le \max_{k} I_k(z) \le J(z). \tag{2.15}$$

Proof. Let $h_k(\theta, z) = \theta z - c_k(\theta)$ and $h(\theta, z) = \min_{k=1,...,r} h_k(\theta, z)$. Then, $\forall z \in \mathbb{R}$, $\forall k = 1,...,r$, $I_k(z) = h_k(\theta_k(z), z)$ and $I(z) = \sup_{\theta \in \mathbb{R}} h(\theta, z)$. By Lemma 2.1, $h_k(0, z) = 0$, and h_k is concave in θ for all k, z, thus, $h(\theta, z)$ is also concave in θ (minimum of concave functions).

To show part 1, consider three cases.

Case 1. $z > \mu_r$. Then, $\theta_k(z) > 0$ and $h_k(\theta_k(z), z) = I_k(z) > 0$, k = 1, ..., r, Thus, $h(\theta, z) > 0$, $\forall \theta \in (0, \underline{\theta}(z))$. In addition, $h(\theta, z) \leq 0$, $\forall \theta < 0$, because h is concave in θ and $h(\theta, z) = 0$. Therefore, I(z) > 0 and $I(z) = \sup_{\theta \geq 0} h(\theta, z)$. Also, $\forall z_1 \geq z_2 \geq \mu_r$, $\forall \theta > 0$, $h(\theta, z_1) \geq h(\theta, z_2)$, thus, $I(z_1) \geq I(z_2)$.

Case 2. $\mu_1 \leq z \leq \mu_r$. From Lemma 2.1, the maximizing point of $h_1(\theta, z)$ satisfies $\theta_1(z) \geq 0$, and since $h_1(\theta, z)$ is concave in θ , it follows that $h(\theta, z) \leq h_1(\theta, z) \leq 0$, $\forall \theta \leq 0$. Similarly, $\theta_r(z) \leq 0$ and $h(\theta, z) \leq h_r(\theta, z) \leq 0$, $\forall \theta \geq 0$. Thus, $h(\theta, z) \leq 0$, $\forall \theta$ and h(0, z) = 0, from which it follows that I(z) = 0.

Case 3. $z \le \mu_1$. Following the same reasoning as in Case 1, it can be shown that I(z) > 0 and nonincreasing.

To show part 2, first note that $h(\theta, z) \leq h_k(\theta, z)$, $\forall k$, therefore, $I(z) = \sup_{\theta} h(\theta, z) \leq \sup_{\theta} h_k(\theta, z) = I_k(z)$, $\forall k$. In addition, $\forall z \geq 0$, $J(z) = \overline{\theta}(z)z - \underline{c}(z) \geq \theta_k(z)z - c_k(\theta_k(z))$

 $I_k(z)$, $\forall k$ and the same holds for $z \leq 0$, thus, (2.15) follows.

Theorem 2.3 1. For all closed sets $C \subset \Re$

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \log P_n^{\pi} C \le -\inf_{x \in C} I(x). \tag{2.16}$$

2. For all open sets $O \subset \Re$

$$\underline{\lim_{n \to \infty} \frac{1}{n} \log P_n^{\pi} O \ge -\inf_{x \in O} J(x). \tag{2.17}$$

Proof. Let $z > \mu_r$. We will show that

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \log P_n^{\pi}[z, \infty) \le -I(z). \tag{2.18}$$

From the generalized Chebycheff inequality, $\forall \theta > 0$,

$$P_n^{\pi}[z,\infty) = Q_n^{\pi}[\overline{X}_n \ge z] = Q_n^{\pi}[\theta S_n \ge n\theta z] \le e^{-n\theta z} E^{\pi}[e^{\theta S_n}]. \tag{2.19}$$

It is shown in Lemma 2.4 that

$$E^{\pi}[e^{\theta S_n}] \le e^{n\overline{c}(\theta)}. \tag{2.20}$$

Combining (2.19) and (2.20),

$$\overline{\lim_{n\to\infty}} \frac{1}{n} \log P_n^{\pi}[z,\infty) \le -\sup_{\theta>0} [\theta z - \overline{c}(\theta)] = -I(z) = -\inf_{y\in[z,\infty)} I(y).$$

The extension to any closed set C is shown following an argument in Varadhan (1984). If $C \cap [\mu_1, \mu_r] \neq \emptyset$, then, from Lemma 2.2, $\inf_{x \in C} I(x) = 0$. If $C \cup [\mu_1, \mu_r] = \emptyset$, let $y_1 = \max\{y : y \in C, y < \mu_1\}$ and $y_2 = \min\{y : y \in C, y \geq \underline{\mu}\}$. Since C is closed, y_1, y_2 always exist (with the convention $\max \emptyset = -\infty$, $\min \emptyset = \infty$). Then, $P_n^{\pi}C \leq 2\max\{P_n^{\pi}(-\infty, y_1], P_n^{\pi}[y_2, \infty)\}$, therefore, $\overline{\lim}_{n \to \infty} \frac{1}{n} \log P_n^{\pi}C \leq -\min\{I(y_1), I(y_2)\} = -\inf_{x \in C} I(y)$, which proves (2.16).

We next show (2.17). For any open set O and $z \in O$, $\exists \delta > 0$ sufficiently small, such that $B_{z,\delta} \subset O$, where $B_{z,\delta} = \{x \in \Re : |x-z| < \delta\}$. Therefore, $P_n^{\pi}O \geq P_n^{\pi}B_{z,\delta}$, and, in order to show (2.17), it suffices to show that, $\forall z$,

$$\underline{\lim_{n \to \infty} \frac{1}{n} \log P_n^{\pi} B_{z,\delta} \ge -J(z). \tag{2.21}$$

Fix $z > \mu_r$ and δ sufficiently small. To show (2.21) it suffices to show that

$$\underline{\lim_{n \to \infty} \frac{1}{n} \log Q_n^{\pi} B_{z,\delta}' \ge -J(z), \tag{2.22}$$

where

$$B'_{z,\delta} = \{h_n : \overline{X}_n \in B_{z,\delta}, S_{k,t_k(n)} \ge 0, k = 1, \dots, r\},$$
(2.23)

 $S_{k,t_k(n)} = \sum_{t=1}^n t_k(n) y_{k,t}$ and $t_k(n) = \sum_{t=1}^n \mathbf{1}\{A_t = k\}$. Quantities $t_k(n)$ and $S_{k,t_k(n)}$ denote the number and the sum of the observations from population E_k during the first n periods. Recall that Q_n^{π} represents the probability distribution of the n – period history H_n .

For k = 1, ..., r, define a measure transformation $\tilde{F}_{k,z}$ of F_k as

$$d\tilde{F}_{k,z}(x) = \frac{e^{\theta_k(z)x}dF_k(x)}{M_k(\theta_k(z))}.$$
 (2.24)

Then, by definition of $\theta_k(z)$,

$$\int x d\tilde{F}_{k,z}(x) = z, k = 1, \dots, r.$$
(2.25)

Conditioning on history h_n and using the transformation (2.24),

$$\begin{split} Q_{n}^{\pi}B_{z,\delta}^{\prime} &= \int_{B_{z,\delta}^{\prime}} dQ_{n}^{\pi}(h_{n}) \\ &= \int_{B_{z,\delta}^{\prime}} \left(\prod_{t=1}^{n} M_{a_{t}}(\theta_{a_{t}}(z)) e^{-\theta_{a_{t}}(z)} \right) d\tilde{Q}_{n}^{\pi}(h_{n}) \\ &= \int_{B_{z,\delta}^{\prime}} \exp \left(\sum_{k=1}^{r} t_{k}(n) c_{k}(\theta_{k}(z)) - \theta_{k}(z) S_{k,t_{k}(n)} \right) d\tilde{Q}_{n}^{\pi}(h_{n}), \end{split} \tag{2.26}$$

where \tilde{Q}_n^{π} denotes the distribution of H_n when the populations follow the modified distributions $\tilde{F}_{k,z}$.

In Lemma 2.5 it is shown that, first, on $B'_{z,\delta}$,

$$\sum_{k=1}^{r} \theta_k(z) S_{k,t_k(n)} \le n\overline{\theta}(z) \ (z+\delta). \tag{2.27}$$

and second,

$$\lim_{n \to \infty} \frac{1}{n} \log \hat{Q}_n^{\pi} B_{z,\delta}' = 0. \tag{2.28}$$

Using (2.27), (2.28) and the definition of $\underline{c}(z)$, (2.26) becomes

$$Q_{n}^{\pi}B_{z,\delta}' \geq e^{n\underline{c}(z)}e^{-\overline{\theta}(z)(nz+n\delta)}\tilde{Q}_{n}^{\pi}B_{z,\delta} = e^{-nJ(z)-n\delta}\tilde{Q}_{n}^{\pi}B_{z,\delta}', \qquad (2.29)$$

thus, $1/n \log Q_n^{\pi} B_{z,\delta}' \ge -J(z) - \delta + 1/n \log \tilde{Q}_n^{\pi} B_{z,\delta}'$, from which (2.22) follows by letting $n \to \infty$ and $\delta \to 0$.

In order to complete the proof of (2.21), we also need to consider the cases $0 \le z \le \mu_1$, $\mu_1 \le z < \mu_r$ and z < 0. These can be handled in the same way as the case $z > \mu_r$, with the appropriate modifications of the definition of $B'_{z,\delta}$ and relation (2.27).

Lemma 2.4 Under any adaptive allocation rule π , $E^{\pi}[e^{\theta S_n}] \leq e^{n\overline{c}(\theta)}$.

Proof. Conditioning on the (n-1) - history $H_{n-1} = h_{n-1} = a_1, x_1, \dots, a_{n-1}, x_{n-1}$

$$E^{\pi}[e^{\theta S_n}] = E^{\pi}[E^{\pi}[e^{\theta S_{n-1}}e^{\theta X_n}|H_{n-1} = h_{n-1}]]$$

= $E^{\pi}[e^{\theta S_{n-1}}E^{\pi}[e^{\theta X_n}|H_{n-1} = h_{n-1}]].$ (2.30)

Given policy π and history h_{n-1} , the distribution of X_n is F_k , with probability $\pi_n(k|h_{n-1})$, for k = 1, 2, ..., r. Therefore

$$E^{\pi}[e^{\theta X_{n}}|H_{n-1} = h_{n-1}] = \sum_{k=1}^{r} \pi_{n}(k|h_{n-1})E[e^{\theta Y_{k1}}]$$

$$= \sum_{k=1}^{r} \pi_{n}(k|h_{n-1})M_{k}(\theta)$$

$$\leq \max_{k} M_{k}(\theta) = e^{\bar{c}(\theta)}. \tag{2.31}$$

Applying (2.31) repeatedly to (2.30), the lemma follows.

Lemma 2.5 Let $z > \mu_r$ and define the set $B'_{z,\delta}$ as in (2.23). Then

- 1. On the event $B'_{z,\delta}$ it is a true that $\sum_{k=1}^r \theta_k(z) S_{k,t_k(n)} \leq n\overline{\theta}(z)$ $(z+\delta)$.
- 2. Let \tilde{Q}_n^{π} denote the distribution of H_n when the populations follow the modified distributions $\tilde{F}_{k,z}$. Then, $\lim_{n\to\infty}\frac{1}{n}\log \tilde{Q}_n^{\pi}B'_{z,\delta}=0$.

Proof. Since $z > \mu_r \ge 0$, it follows from Lemma 2.2 that $\theta_k(z) > 0$, $\forall k$. In addition, on the event $B'_{z,\delta}$ it is true that

$$\begin{split} nz - n\delta &< \sum_{k=1}^{r} S_{k,t_k(n)} < nz + n\delta, \\ S_{k,t_k(n)} &\geq 0, \quad \forall k. \end{split}$$

Let

$$N = \max\{\sum_{k=1}^{r} \theta_k(z) S_k : \sum_{k=1}^{r} S_k \le nz + n\delta, \sum_{k=1}^{r} S_k \ge nz - nd, S_k \ge 0\}.$$

The solution of the above optimization problem corresponds to an extreme point of the (convex) feasible region. Any extreme point is of the form $S_l = nz - n\delta$, $S_j = 0, \forall j \neq l$, or $S_l = nz + n\delta$, $S_j = 0, \forall j \neq l$, for some l = 1, ..., r. Therefore,

$$\begin{split} N &= \max_{k=1,\dots,r} \{ \max\{\theta_k(z) (nz - n\delta), \ \theta_k(z) (nz + n\delta) \} \} \\ &= \max_{k=1,\dots,r} \{ \theta_k(z) (nz + n\delta) \} \\ &= \overline{\theta}(z) (nz + n\delta), \end{split}$$

from which part 1 follows.

We next show part 2. Note that

$$\hat{Q}_{n}^{\pi} B_{z,\delta}' = \tilde{Q}_{n}^{\pi} [\overline{X}_{n} \in B_{z,\delta} \mid S_{k,t_{k}(n)} \ge 0, \ \forall k] \ \tilde{Q}_{n}^{\pi} [S_{k,t_{k}(n)} \ge 0, \ \forall k] \ ,$$

thus,

$$\frac{1}{n}\log \tilde{Q}_{n}^{\pi}B_{z,\delta}' = \frac{1}{n}\log \tilde{Q}_{n}^{\pi}[\overline{X}_{n} \in B_{z,\delta} \mid S_{k,t_{k}(n)} \ge 0, \ \forall k] + \frac{1}{n}\log \tilde{Q}_{n}^{\pi}[S_{k,t_{k}(n)} \ge 0, \ \forall k]. \tag{2.32}$$

Since the transformed distributions all have expectation equal to z, it follows from the law of large numbers that $\lim_{n\to\infty} \tilde{Q}_n^{\pi}[\overline{X}_n \in B_{z,\delta}] = 1$. Therefore, $\lim_{n\to\infty} \tilde{Q}_n^{\pi}[\overline{X}_n \in B_{z,\delta}|S_{k,t_k(n)} \geq 0$, $\forall k = 1$, and

$$\lim_{n \to \infty} \frac{1}{n} \log \tilde{Q}_n^{\pi} [\overline{X}_n \in B_{\varepsilon, \delta} \mid S_{k, t_k(n)} \ge 0, \ \forall k] = 0.$$
 (2.33)

Next conider $\tilde{Q}_n^{\pi}[S_{k,t_k(n)} \geq 0, \forall k]$. The event $\{S_{k,t} \geq 0, \forall t, \forall k\}$ implies the event $\{S_{k,t_k(n)} \geq 0, \forall k\}$, therefore

$$\tilde{Q}_n^{\pi}[S_{k,t_k(n)} \ge 0, \ \forall k] \ge \tilde{Q}^{\pi}[S_{k,t} \ge 0, \ \forall t = 1, 2, \dots, \forall k = 1, \dots, r].$$

Consider the "round robin" allocation rule which starts with one sample from E_1 and then takes one sample from each population repeatedly. As $n \to \infty$ this rule will observe all infinite sequences of outcomes from each population. Therefore, if under this rule the event $\{S_{k,t} \geq 0, \ \forall k\}$ is realized, then it will also be realized under any adaptive rule π . In addition, under the round robin rule, $S_{k,t}, t = 1, 2, \ldots, k = 1, \ldots, r$ represent the partial sums of r independent sequences of i.i.d random variables, each with distribution $\tilde{F}_{k,z}$. From these observations it follows that

$$\tilde{Q}^{\pi}[S_{k,t} \ge 0, \ \forall t = 1, 2, \dots, \ k = 1, \dots, r] \ge \prod_{k=1}^{r} P^{\tilde{F}_{k}}[S_{k,t} \ge 0, \ \forall t = 1, 2, \dots].$$

Under the transformed distribution $\tilde{F}_{k,z}$, $Y_{k,t}$, $t=1,2,\ldots$ is a sequence of i.i.d. random variables with mean z>0. From Lemma 2.8 of Chow, Robbins & Siegmund (1971) we obtain $P^{\tilde{F}_k}[S_{k,t}\geq 0, \ \forall t=1,2,\ldots]>0$, $\forall k$, thus, $\tilde{Q}_n^{\pi}B'_{z,\delta}\geq Q:=\prod_{k=1}^r P^{\tilde{F}_k}[S_{k,t}\geq 0, \ \forall t=1,2,\ldots]>0$, and

$$\underline{\lim_{n \to \infty} \frac{1}{n} \log \tilde{Q}_n^{\pi} B_{z,\delta}' \ge \frac{1}{n} \log Q = 0.$$

On the other hand, since $\tilde{Q}_n^{\pi} B_{z,\delta}' \leq 1$, $\overline{\lim}_{n\to\infty} \frac{1}{n} \log \tilde{Q}_n^{\pi} B_{z,\delta}' \leq 0$. Therefore,

$$\lim_{n \to \infty} \frac{1}{n} \log \tilde{Q}_n^{\pi} B_{z,\delta}' = 0. \tag{2.34}$$

Part 2 follows from (2.32), (2.33) and (2.34).

References

- Chow, Y., Robbins, H. & Siegmund, D. (1971), The Theory of Optimal Stopping, Houghton Mifflin.
- Dembo, A. & Zeitouni, O. (1993), Large Deviations Techniques and Applications, Jones and Bartlett.
- Dynkin, E. B. & Yushkevich, A. A. (1979), Controlled Markov Processes, Springer-Verlag.
- Ellis, R. (1984), 'Large deviations for a general class of random vectors', Annals of Probability 12, 1-12.
- Ellis, R. S. (1985), Entropy, Large Deviations and Statistical Mechanics, Springer Verlag.
- Varadhan, S. (1984), Large Deviations and Applications, SIAM.