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ABSTRACT

Let Yio,t = 1,2,..., k= 1,...,r be r sequences of i.i.d. random variables and X, =
1/ny i, Yi(k),t o, the sample mean of an n-size sample, given an adaptive allocation rule
7= {A(t),t = 1,2,...}. We show that if E[¢*¥*'] is finite in a neighborhood of # = 0, then.
for all adaptive rules 7, limy_.1/nlog PT(X, € ('] < —infrec {(z), for all closed sets
C CcRand lim, . 1/nlog PT[X, € O] > ~infreo J(z), for all open sets O C R, where
[(x) and J(z) are rate functions independent of =.

1. INTRODUCTION. Consider statistical populations £1,.... E,. With each Ej is
associated a sequence {Yi,,n = 1,2 ...} of i.i.d. random variables representing outcomes
or samples from population £}%. A sequential or adaptive allocation rule 7 is a sequence of
probability measures on appropriately defined probability spaces (c.f., Dynkin & Yushkevich
(1979)), which specify the probability of selecting a population at time ¢, given the previous

history of selections and outcomes. Typically the selection is made in such a way to maximize

some measure of performance, such as the expected sum of the outcomes, etc..

Let the random variables 4;, X denote the population from which a sample is taken at time
t and the outcome of the t'h sampling, respectively. Let S, = Yoty X, MT(6) = E*[e?Sn),
and ¢ (#) = 1/nlog M (6). In this framework ¢]i(6#) does not necessarily converge as n — oc

(see example 1 below).
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The lack of convergence of ¢, implies that the sufficient conditions for the large deviations
property (ef. Ellis (1085) ) do not hold. Nevertheless, in this paper we show that a large
deviations type property holds for the sequence X, Specifically, we prove that there exist
upper and lower bounds for the exponential decay of the large deviation probabilities, which
are independent of the form of the allocation rule =. However, the upper and lower bounds
do not coincide. This is the reason that we call this result a large demations fype property.

2. PROOF OF THE LARGE DEVIATIONS PROPERTY.  Let Fi denote the
common distribution of Yi,, pa = [ 2dFi(x) the corresponding mean, My (6) = [ " dFi(y)
the moment generating function and ey (8) = log Me(#). Without loss of generality we as-
sume that g > 0, ¥k = 1.....r (if not true, we can add a sufficiently large constant
to all random varables Ye, without changing the probabilistic properties of the problem).
For notational convenience we also assume that gy < ps € .. < p,. Let QF denote the
probability distribution of the history of selections and outcomes up to the first n samples,
Hy=(A,,X; ..., An, X,) under allocation rule x and QT the distribution of the complete
history M = (A;, Xy....). Also let PY denote the probability distribution of X,, under =,
where X, = S, /n. If x is stationary (i.e., at any step the selection probabilities are indepen-
dent of past history and current time) then, {X, ¢ = 1,2, ) is asequence of 1.1.d. random
variables with distribution F* = [, #(k)Fe. Therefore. X, = 4" = 37|, #(F)pe.
almost surely, as n — o, In addition, ¢} (0) = ¢(0) := log(Z',z, T k)M(9)), thus c1(6)
converges as n = > for all 4, and a large deviations property holds for P, with rate fune-
tion [(z) = supgge(f: = c(@)) (cf. Ellis (1984)). Specifically, for all closed sets ' and open

sets O, it is true that

Tim ;';losP:(C) < - inf 1), (2.1)
. . )
alz_xpw - 1og PI(0) 2 = inf I(x). (22)

However for nonstationary allocation rules, ¢} (§) need not converge. ln particular, copsider

the following example.

Example 1. Let r = 2 and consider an allocation rule =5, which takes 2° samples from
Ey, 2 from E3, 27 from E; and so on.

At the end of the (26)™M group of samples 7o has taken 37, 2% = (4497~ 1)/3 samples
from E, and )::,'a' 2741 = 24" - 1)/3 samples from Ey, for atotal of ny e = 2(4%)=1.
Similarly, at the end of the (24 + 0 group the number of samples from E, and E; 15
(444 = 1)/3 and 24%*! = 1)/3 respectively, and the total na, = 45%1 =]
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Since the populations are independent, we find that

a0 = o [4"“3‘ Lo () + %—ch(ﬁ)]
= [3(4::1__1”01(0) + ;E:::: - :;C'_)(g)] . (2.4)

The two subsequences ¢y, ,,¢n,, have in general different. limits as & — oo ( 2/3¢,(6) +

1/3¢2(0) and 1/3¢,(0) + 2/3c2(f), respectively), thus, ¢J¢ does not converge.

In the remaining of this section we show that, in spite of Example 1, PJ satisfies a large
deviations type property, with generally different rate functions for the upper and lower
bound. Before we prove the main theorem we introduce some definitions and intermediate

results.

Let Ii(z) = supg (0z — ¢k (0)) be the Legendre-Fenchel transform of ¢i(6). Lemma 2.1
below summarizes some well known properties of ¢i(f) and Ii(z), It is a restatement in

our notation of Lemma 2.2.5 of Dembo & Zeitouni (1993).
Lemma 2.1 1. ¢x(0) s convex in 0 and [;(z) is conver m z. Also I (z) > 0, with
equality if and only if z = .
2. If ci(0) < 0o for some 0 > 0, then py < oo and for all = > py
Ii(2) = sup (0z — ci(6)) . (2.5)
820
Simalarly, if cx(0) < 0o for some 0 < 0, then px > —o0 and for all z < py

I (z) = sup (0z — ¢ (0)) . (2.6)
<0

3. cx(9) s differentiable for all @ such that cx(0) < o0, Morcover, if 0x(z) 1s defined as
the solution of ¢ (6) =z i 6, then,
[z rdR(a)
T [ehErdF(z)
Ie(2) = 0k(2) 2 = cx(0i(2)) (2.8)

(2.7)

and 6x(z) 2 0 (< 0) for z> pi (< px), with equality if and only if z = p;.
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Define
¢ = k;r}grck(O) (2.9)
g(z) =, min ci(0k(2)) (2.10)
0(z) = max 6;(z) (2.11)
8(z) =  min 6i(z) (2.12)
I(z) = sup (9 — &(0)) (2.13)
y )2z~ < F4
o= B8 s 20

I{z) and J(z) are the rate functions for the upper and lower bound in Theorem 2.3. Lemma

2.2 states their properties.

Lemma 2.2 1. /(z) 2 0 for all =, with equality of and only of py < 2 < p,. Moreover

I(z) 1s nondecreasing for z > p, and nomncreasing for = < py.

I(z) < mkin Ii(2) € max Ie(2) < J(2). (2.15)

Proof. Let hi(8,2) = 60z—ci(0) and h(0,z) = ming=y, ,hi(f,z). Then, Yz € R, Vk =
Loooor, Te(z) = he(6i(2),2) and I(z) = supgeq (0, :). By Lemma 2.1, hi(0,2) = 0,
and hy is concave in @ for all k&, z, thus, h(#,z) is also concave in ¢ (minimum of concave

functions).
To show part 1, consider three cases.

Case 1. z > py. Then, 0x(z) > 0 and hp(0x(2),2) = Ix(z) > 0. k = 1,....r, Thus,
h(0,z) >0, V8 € (0,0(z)). In addition, h(0,z) < 0, ¥0 < 0, because h is concave in
6 and h(0,z) = 0. Therefore, I(z) > 0 and I(z) = sups>oh(f.z). Also, ¥z;y > 2z >
fir, YO >0, W8, zy) > h(0,z22), thus, [(zy) > I(z2).

Case 2. py < 2 < pp. Yrom Lemma 2.1, the maximizing point of h;(0,2) satisfies
0y(z) 2 0, and since hy(0,z) is concave in 8, it follows that h(0,z) < hy(8,:) <0, V8 < 0.
Similarly, 0,(z) <0 and h(0,z2) < he(0,2) <0, V0 > 0. Thus, h(0.z) <0, V6 and
h(0,2) =0, from which it follows that I(z) = 0.

Case 3. z < py. Following the same reasoning as in Case 1, it can be shown that I{z) > 0

and nonincreasing.

To show part 2, first note that h(6,z) < hi(0,z), Yk, therefore, I(z) = supyh(0,z) <
supg hie(0,2) = Te(2), Vk. In addition, Vz >0, J(2) = 0(z)z — ¢(2) > 0k(2)z — cx(fi(2) =
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Ix(z), Yk and the same holds for z <0, thus, (2.15) follows. 0

Theorem 2.3 1. For all closed sets C C R

— 1 . . _
nll_l‘l;o ;IogP,,C-' < —;22_ I(z). (2.16)
2. For all open sets O C R
.1 . . _ -
nh_l.r;;loanO > —rlleltf)\](.l). (2.17)

Proof. Let =z > pu,. We will show that

— 1 - )
Jim_ ~log P{z,00) < —1(2). (2.18)

From the generalized Chebycheff inequality, Y6 > 0,

Prz,00) = QNN > 2] = QF{8S, > nbz] < e~ E7[efS0]. (2.19)

It is shown in Lemma 2.4 that
Eﬂ’[egs.} S C‘"Z(O). (220)

Combining (2.19) and (2.20),

lim llog PJ[z,00) < —sup[fz = ()] = =1(z) = = inf I(y).
n—oo N 8>0 €[z 00)

The extension to any closed set C is shown following an argument in Varadhan (1984).
If COuy,pe] # 0, then, from Lemma 2.2, infeec I(z) = 0. 1f CU [y, p.] =0, let
yi = max{y :y € Ciy < mu} and y» = min{y : y € C,y > p}. Since C is closed,
vi,v2 always exist (with the convention max0 = —oo, min = o). Then, PJC <

2max{P] (=, ], PT(y2,2c)}, therefore, mn_m};]ogPJ’C < —min{I(yy). I(y2)}

—infrec I(y), which proves (2.16).

We next show (2.17). For any open set O and z € O, 36 > 0 sufficiently small, such that
B.s CO, where B.s={x€R:|z—z|<é}. Therefore, PTO > P7B. s, and, in order
to show (2.17), it suffices to show that, ¥z,

lim log Py B.s > —J(3). (2.21)

N =00

Fix = >y, and § sufficiently small. To show (2.21) it suffices to show that

lim

1
n—oc N

log QnB: s > —J(z), (2.22)



28 BURNETAS AND KATEHAKIS

where

ts=1{hn : Xn €B:s, Stumy 20,k =1,...,r}, (2.23)
Sktu(m) = Loe=y te(M)yee and ti(n) = 7, 1{A, = k}. Quantities t;(n) and S ¢,(n)

denote the number and the sum of the observations from population £ during the first n
periods. Recall that @ represents the probability distribution of the n — —period history
H,.

For k=1,...,r, define a measure transformation 1:1,.. of Iy as

e AR ()

Fra(2) = oy

(2.24)
Then, by definition of (z),
/mdi'}_..(.t) =zk=1,..., r. (2.25)

Conditioning on history h, and using the transformation (2.24),

:a—/ dQr(h

-/, (H Ma.(oa.u))e"w“’) 4Q(hy)

t=1
=/' exp (Zu Jer (0i(2)) ok(Z)SL-,u(n)) dQx(hy), (2.26)

where Q: denotes the distribution of H,, when the populations follow the modified distri-

butions F ..
In Lenuna 2.5 it is shown that, first, on B

Zak(:)s,,.,‘(,,) < 115(:) (z 4 8). (2.27)

k=1

and second,

hm —logQ,, Ls =0. (2.28)
Using (2.27),(2.28) and the definition of ¢(z), (2.26) becomes
;B:.a > eng(x\e-s(z)\nz-i-né)é:;B:'b — c-n.l(:)-néQ:B;'é‘ (2.29)

thus, 1/nlogQ}B. > ~J(z) =6+ 1/n log QI % 4, from which (2.22) follows by letting

n-+o00and § — 0.

In order to complete the proof of (2.21), we also need to consider the cases 0 < 2 < py, py <
2 < pu, and r < 0. These can be handled in the same way as the case z > p,, with the

appropriate modifications of the definition of B] ; and relation (2.27). o
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Lemma 2.4 Under any adaptive allocation rule =, E™[e?Sn] < "%,

Proof. Conditioning on the (n — 1) — =history Hn_) = hy,—1 = a1, 21.. .., @n=y, Tn-1,
Ew[eas.] - E"[E*[e"s"“egx"lﬂn_l — hn-l]]
= Er{eOSn-IE'f[eoxn'Hn_l = h"‘l]]' (230)

Given policy 7 and history h,_;, the distribution of X, is Fi., with probability m,(k|hs 1),
for k=1,2,...,r. Therefore

E"["**Hpoy = hyoy) = Z"’n(“hn-])E[f”""]

k=1
= Z T (kjhy 1) M (0)
k=1

< max Mi(0) = e, (2.31)

Applying (2.31) repeatedly to (2.30), the lemma follows. m]

Lemma 2.5 Let z > p, and define the set B} 5 as in (2.23). Then

1. On the event Bl it isa true that 3 j_, 0c(2)Sk i n) < n0(z) (2 +6).

2. Let Q,’{ denote the distribution of H, when the populations follow the modified distri-

butions Fi .. Then, limg_cc ;';logo:: 15 =0.

Proof. Since z > u, > 0, it follows from Lemma 2.2 that 6,(z) > 0, Yk. In addition, on

the event B} s it is true that

;

n:—né < ZSk,,,(") < nz+ né,
k=1

Skn) 20, Vk.

Let

.
Sk € nz+né, ZS" > nz —nd, S > 0}.

k=1 k=1

The solution of the above optimization problem corresponds to an extreme point of the

N = max{z Ox(2)Sk -
k=1

(convex) feasible region. Any extreme point is of the form Sy =nz—né, S; =0,Vj # 1,

or Sy=nz+4+nb S;=0,¥j#l, forsome [ =1,...,r. Therefore,
N = (max { max{0i(2) (nz — néd), Ox(z)(nz +né)} }
= max {fx(z)(nz + né))
k=1,.r
= 0(z)(nz + né),

from which part 1 follows.
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We next show part 2. Note that

QnBls = QnlXn € Bis | Ska(ny 20, Vk] QE[Sk.1(n) 2 0. ¥A]

thus,
1 ~ 1 g 1 -
o log Q,’:B;'é == logQn[Xn € B: s | Sk tuny 2 0, Yk] + . log Q11 [Sk tu(ny 2 0, Vk]. (2.32)

Since the transformed distributions all have expectation equal to z, it follows from the
law of large numbers that limy—c QI[Xn € B.s] = 1. Therefore, lim,_.. Q7[X,. €
B. §|Sk,ex(ny 2 0, Vk] =1, and

o] 2
Jim —1og QN[Xn € Bes | Skam) 2 0, ¥A] = 0. (2.33)

Next conider QX[Sk.un) = 0, Yk). The event {Sx. > 0, V¢,¥k} implies the event
{Sktu(n) 20, Vk}, therefore

QI Skiainy 20, VK2 Q7[Sk 20, Vt=1,2... Yk=1 0]

Consider the “round robin™ allocation rule which starts with one sample from £y and then
takes one sample from each population repeatedly. As n — oo this rule will observe all
infinite sequences of outcomes from each population. Therefore, if under this rule the event
{Sk« > 0, Vk} is realized, then it will also be realized under any adaptive rule =. In
addition, under the round robin rule, Sy ¢, t = 1,2,..., k = 1,...,» represent the partial
sums of r independent, sequences of i.i.d random variables, each with distribution F% .. From
these observations it follows that
.
Q[Ske20, V=12 k=1 .02 [[P*[Sic20 vt=12.)

k=1
Under the transformed distribution I:"k‘,, Yieot = 1,2,... is a sequence of i.i.d. random
variables with mean = > 0. From lLeinma 2.8 of Chow, Robbins & Siegmund (1971) we
obtain PP (S, > 0, Wt =1,2,..] >0, Vk, thus, Q1B > Q := [Tio, PP*[Sk, >
0, Vt=1,2,..]1>0, and

lim ! log,Q,,B' logQ = 0.

ne=oo N

On the other hand, since Q7 B s <1, m,,_o;. Llog QF B s <0. Therefore,

lim —lon,, ts=0. (2.34)

n=—oon

Part 2 follows from (2.32), (2.33) and (2.34). 0
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