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ABSTRACT

Consider & continsously operating systexn, A problemn that arizses in practice
and is related to the optimal operstion of the system is how to allocais
limited repair resetirces B & most efficient manner, Le, ¢ maximize 2
measure of system performance. o this article our intersst i in identifving
clagsez of reliability systems {structures} such thal optimal dynamic repair
allpcation pelicies depend on the structure ondy. A genecal siructure of a
system 18 that of a E-ant-gfX system where component 1 is zelf asswined
to be a Rl ewt-nfN] system . All subsystems have identical components the
lifetimes of which are sssumed to be independent, expuneatially distributed
random vasiables. The system is maintained by a stugle repaiouan anid the
tirge it fakes lo repair a friled comporont = alss an exponentially
distributed random variable, Repaired components are as good as new and
preemptions are allowsd, Using several optimality <riteria, wi chararterize
all stationary optitaal policies for the following struclures: the H-suf-of-N
system with -sul-of-N) subsystems, the K-out-of-N system willi N'-out-of-
N* subsystems, the NeoulofN systemi with K-ouf-of N subsystems, snd
the I-pui-ofN system with Klowd-ofN' subsysiers. We discuss the
implications of the resulfs obtaitned Lo prodlems of control of amrivals in
quetes,
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1. _INTRODUCTION,

Consider a system consisting of N subsystems which functions when at least ¥ out of

@
L

ks N component-anbsystems are sperstional, Bubsystem @ consists of N% components
and lunclions when at Jeast K of ihem operate. This structuce will be dencted hy
{K N (K \T:}i_lf . Cmponents of the subsystems may fail. Their lifetimss are
expouentiafly distzibuted, indapendent random variables. The rate of failure is common
for ali components of all subsystems aewl is deanted by g Failures may orcur even
when the system is not fusctioning. The svsiem Is maintaioed by a single repairman
who may be assigned to any feiled compment {from now on componeat will always
mean “component of a suleysiem™), The tepairman may switch from one failed
companent to another instantaneously and the time it takes him to camplete the repair
of any failed component f8 cousiders] ta be an exponentially distributed randow
variable with parameter A, Repaived componests are a5 good as new. Extreme coses of
sush structures are () o series strocture of subsystems, where each subsystern is &
paratisl systemn and {b) & pavatlel structure of subsystems, where esch subsystems is s
seties systers.  For {a) it s intoitively sxperied that a good repair allocation policy
should always assign the repsicman to sny subsysters among thos: with the smsler
aumber of functisning components, Lo, it will tend to egealize the number of
fagctioning ramponsiits arross subaystenis; where if some subsvslems have ag equal
numnber of functioning componsnts the policy beeabs liex arbitearily. We call it
eguahning peoficy. For (b} & good policy should tend to maximize the number of senies
subsystems thal are fuactioning, where ties are also broken arbitrasily. This policy,
which is clearly the oppusite tn the equalizing policy, tends to maximize the number of
fugctinning  compenents of the subsystem that i “more” sperational. We call 1t
wegualizing policy. 11 turny oot thel the inequalizing policy is optimal without any
additional restriclions only when the submysterns are identical. Henor we see that it is
important 1o be able to identify precisely the most general structures for which optimal
poticies do posses thase type of properties. This is doue for the [KiN; (11 56 Y
systemi  {case (LAY}, the [NING{K'IN}, o system {owse (LB)), the

b3

[N IK NG ] syt {case (A aed the [KINCINING, o,
system {case (2:5_}_). Noie that in cases (1A} and (LB}, suheysterns are not assumesd
to be ideniicsl, but the pecessary amount of functioning components for a subsysiess

10 function is assured to be the same for all subsystems. For cases {24}, (3B},



OPTIMAL MAINTENANCE OF SYSTEMS 139

subsystems are assumed to be identical, We establish the optimality of a pertinent
policy for each class under various criteria and show they are unigque optirmal among

~all policies. Sperifically we show the following.

For the [K|N; (1] N,

optimality propertivs. It maximizes afochustically the number of working subsystems si

;;} system, the equalizing policy possesses the followiug
any time iustant {. Hence, it maximizes both the expected discounted sysiem

operadien hime for all drscount rales 3 (3 > 0) and the svevage system operation fime,

For the [N[N;(K' [N}y x| system, consider the generalisation of the equalising
policy defined as fullows, Whenever the system is down it assigns the vepairman 1o any
non-functioning subsystem and when the system is up it {ollows the equalizing policy.
We call this policy K'— equalizning policy and show that il maximizes the probubility
the system is up at any time wmstont { {ie., the Rehability of the system). It {ollows
that it also maximizes both the expected discounted spstem operation time for all

discount rates 2 {3 > 0) and the uverage system operalion time.

For the [1IN; (K IN'}oy o) system the inequalizing policy possesses the following
optimality properties. It maximizes the probakility the system s wp ol any time nstant
t, hence, it also maximizes both the erpected disvounied system operation bime for all

discount rates Z {7 > &) and the aversge system opzrution fime,

Por the [KIN:(N'|N')

inequalizing policy defined as follows. {j Whenever the sysiem s down and there are

j=1...N| éystern, consider the generalization of the
lesy than K subsysiems with functioning componests it assigns the repairman to any
non functioning subsystera {until the system reaches a state in which there are exactly
K subsysteme with fusctioning somponents), i) Whenever the systemy is down and
there are exacily K subsysterns with functioning components it assigns the repairman
o any son functioning subsystem with functioning components. iti) Otherwise, it
follows the inequalizing policy. We call this policy K-meyualizing policy and show that
i maximizes the probability that the subsystem 33 up of any fime ingland 1. Heace, it
also maximizes both the erpected discounted sysiem operation time for ail discount

rates 3 (3 > 0) and the everage system operalion Lime.

Furthermore, it is shown thal when an assignment choice s made beiween two

subsystemns with equal number of working components, it is immatenal to which
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subsystems the repairman is assigned for all classes. Up to this indifference, the
prrtinent policies in the above classes of problems, are shown to be uatguely optimal,
L., any policy that does not have the pertinent, structure is strictly suboptimat for the

coerespinsing ¢lass.

The above repair allocation nodels posses the following {(“dual™) interpretation iu
teris of queuning theory and scheduling. Consider a quening systera with N servers
{service stations). Server ¢ may work on up to N} customers simultancously, N < o<y
we: call N the capacily of server 1. Customers, whose service times are independent
identically distributed exponential randow  varisbles with parameter g, asrrive
according to a Poisson process with parameter A Arriving customers that find all
servers busy are list. Upon ardval customers are wsigned to & server (if there is one
with idle capacity) and they may not change server thereafter. The problem is to
assign the acrivisg customers to servers acrording to a policy that is optimal with
respect 1o certain performance eriteria, Ia this context, equalizing means o assign the
curpent  aerival to the server with maximum idle capacity available currently,
inegualizing means to assign the current arrival to the server with minimum idle
caparily available cucrently, system dewn mesns that there 5 of least one server with
less than K' cnstomers being served (case {L.b}) or that there ore less tham K servers
working at full capacity {caw (2.b). We establish the following results. {l.a) The
prualizing policy smniraces slochastically the number of sdie servers al wny time
instant £, {1.b) The K — equalizing policy mimmizes {he probebility fhere 1s af least
one server with fess than K, 0 < K < Nj, custorners st any time instamt 2. (2.8}
The inequalising policy minimizes the profabibity that oll servers have less then K,
0« K 2 N, customers ol any fime instand £ In this cass we have fo assume thal ali
servers have identical capacity N. (2.b) The K-invgualizing policy minimizes the
profodility that there are lexs than K servers working at full capacity al any time
instant i. In this case we also have to assume that all sarvers have identical capacily
N Purthermore, 10 i shown thal when an assignment choice s made between two
servers with equal nipuber of customers being served, it is immaterial to which
subsystem the repairman s sssigned. Up to this indilference, the pertinent policies in
the above classes of probleras, are shown to be wniguely optimal.

For related work in this area we refer to Smith {1978 ab), Derman, Licberman and
Ross (1978), Nash and Weber{1082), Katebakis and Derman {1984, 1986},
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Courcoudbetis and Varaiya {(1984), Katchakis and Melolidakiz (1988, 1989), Frosting
{1992), Hordijk A. and G. Koale {(1992) and references given there.

2. PROBLEM FORMULATION.

Consider the reliability model first. The assumptions ruade bmply that at aay time
instant, the status of all subsystems is given by a vetlor 2= (2, 2)....2y) with z;
denoting the number of functioning components of subsystem ¢, 0 < 2, < N; for
i=1,..., N. The set of all such vectors is the set of states of the systemn and is denoted
hy 8. The structure of the system is specified by a partition of the state space S inte
iwe sets G and B of “good” and “bad™ states or alternatively, by the structure
fanction &(x} {c.f Barlow and Proshan {19771} For z € 8, let {L'?{x} { {.‘.’E{z}} denwte the
set. of failed {functioning} components of subsystem ¢, We define A2):=L J 2-;1 C?{::}
{ihe set of ali failed coraponents). Let alse A{z):={7: (%{z) # 8] denote the set of
subsysteos with failed components at state 2. The eardinality of set A is denoted by
FAL and the number of working subsystems at state ¥ is denoted by M {z} . We

define the state (&, 2} by

(8,3 &

i

{ (goerce By 508 w2yl € {~zp—2pdl o Ni=z;}

x otherwise

To simplify the notation, whenever ambiguities way ot arise, we will not repeat x in

aotations like K.-ﬁ{ﬂ{_zﬂ o heoswe will write [C2(z)) instead of | oty -

To describe the optimal policies we sesd some more notation. Define the
correspondences a{z} , 6 (2] blx) . &dz) of 5 inte oM guck that when the
systemn s in state », sz} is any suhsystem with the least amount of functioning
components for the [KING{1iN{),  system . 8,.{3) is any non-functioning
subsystem if the system is down: otherwise, ) 5 any subsystem with the least
arpount of fenctivning components for the [NINI(K'[N , i svstem, bls} is
any subsystem with the largest amount of functioning componesnts at state 3, such that
CUx) # 8 for ihe [T{N; (K NJyop o system. Finally, b2} is associated with
the [K{N;(N'IN'}k., i system and it is defined to be any non-functioning
subsystem, if the system is down st state r and there are less than K subsystems that

have at jeast one aperating component, If the system is down at state & and thery are
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exactly K subsystems that have at least one operating component, by} is any non-
functioning subsystem among those that have st least one operating componeni;

otherwise, by{z) is any subsystem with the largest amount of functioning cormponents.
Note that

xut:]min{rj. J=1..,N), (2)

any j, j=1... N, such that x; <K' il My(z) <N
ag«(=}={ (3)

o(x) otherwise,

Ty(gy=max{zj, 2; # j= 1. N) @

any j, 7=1,.., N, such that z, <N', if My(z)<Kand | Az)| <K

li;d.t]:{ any j € F(z) such that 5 <N, il My(z) <K and | A(z)|=K (5)
Wz) otherwise.

where in the last definition we use the notation P(z)={j:2;> 0} . Note also that
8y(¥) = a(z) and by(x) = Ka).

Let @ be a permutation of the set of subsystems, {1,2,...,N}. Then, a permusmible per-
mutailion = of a state z is defined by wit)::(xm,lh). :w'l(a}”""w-l(ﬂ)}-’ where
Zo(4) < N; i=L 2., N. For example, if the state of the system is (2,3,0) and
subsystera 1 consists of 2 components, subsystem 2 of 4 components, and subsystem 3
of 3 components, then (0,2,3) is a permissible permutation, while (3, 2,0) is not. Since
the subsystems have identical components & deterministic policy (c.f. Derman {1470))
need to be specified only up to the subsystem on which a repainman is assigned to.
Given a policy 7, we define the stochastic process: z (1), N_(£;2}, 7.(t;z) as
follows.

i) T (0)=(2g,(0), ..oz (1)) lakes values in § and represenis the status of all
subsysteis at time £ u) N (;zi= M s (1)) takes values in {0,1,...,N} and
represents the nuraber of functioning subsysiems at time 1, provided the state at time
0 was 2. 1) Z {t;z)=¢{z,(1)) takes values in {0,1} and represents the status of the
systern at fime f, provided the state at time 0 was z. Note that {z {f), 1> 0},
{NA:2), ¢28), {Z(t:z), t> 0} are all continuous time Markov chains if r is a
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Markov policy {ef Derman (1978)). If there exist & policy 7y such  that
Nfﬁ(!;z] _53 N_(1;2) (vespectively, Z*a(t;se} é"Z,(t;z} } ¥ ¢2>0 for all policies =,
_ then, we say that =, maximizes stochastically the sumber of functioning subsystems
(respeetively, the reliability of the system) al any tme { given the initial state 2. To
estabiish the stochastic optimality of a poliey wg with respect to N {15}
- {respectively, Z,(t;z)) one must show that the following inequalities (6) (respectively,
| {7)) held.

P(;\’.‘_ﬂ{t,‘x} > k)2 PN Jx) > k), Yi20, ¥&=0.1,..N, foralix. (6)
P{Zﬂo(z;z) =1) 2 P2 (:z) = 1)), V>0, forall policies . {7)

The key idea in establishing (8}, (7) above, is to observe that the random variables
N {t;z) and Z_(!z) way change value at transition epochs only. Furthermoze, we
use the device of uniformization to equalize the times betwéen tramsition epochs
regardless of the policy being ewmployed; see also Katehakis and Melolidakis (1988,
1989), Thus, at any state we consider (dummy) trausitions back to the same state at
such a rate that the sojourn times X;,X,... of the process in the different states are
identically distributed random variables with rate r, whers ris an upper bound on
the transition rates of the process. This resulling process is prohabilistically identical
with the original one {c.f. Lippman (1975}, Ross (1083]). Note that, even though the
number of transition epochs is enlarged by the uniformizatios, no complication arises
as far as policies are concerned when one can restricl altention to deterministic
policies. Since in aur models the state space is finite, the uniformized process exists. In
the sequel we will restrict attention to the latter and in addition, by an appropriate
change of the unit of time, we will assume that r=1. Let 5 =X;+--+X, denote
the (random) time of the =™ transition epoch { Sy=0}, and let n{fi=sup{n:
S, <1} SBince we are consideting the uniformized process, 5, and »{f} are
independent of the policy being used and it is easy to see that {a({f} ., t28)} s a
Poisson process with rate 1. Let N_{n;x) {respectively, Z {n;1)} denote ihe nummber
of functioning subsystems {respectively, the status of the system) at the start of the
o™ transition  epoch. Note that N (42)=N_(a(t);2) and Z{t;5)=2 (n();7}
Y{> 8. Furthermaore,

AR (n(t);2) 2 k)= fﬂ;’{&',cjn,- ) > KPnd=n), forall x, 0< kLN, (8
n= )
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Let us define as (1 () the problem of maximizing P(N_{n;x) > k), with respect to
x for fixed n and ki m=Q,1,..., &=01..,N, It follows that if there exists a
deterministic policy xy {whnse actions are independent of n and k) that is optimal
for all peoblems (I ;) then this policy maximizes stochastically N (#7)
Furthermore if the probleros (11, .} posses a unique optimal policy then this is the
only policy that maximizes stochastically N (t;r) . Analogous arguments hold fur Lhe
problem of maximizing stochastically Z.(t;z), ie., it soffices to consider the
problems (§5), ), of wmaximizing M(Z (m1) = 1); a=D])... . For cac‘; fixed o
and k the problem (T, o) (respectively the problem (IT, ,)) is specified by the
following elements. 1) State spuce: {(zm):2€ 5 m=01,...,8}. 2) Action sets:
Alz;m)=A{z) . 3} System dymamcs: when the system is in state (z;m) and action 3
is chosen, then, the possible transitions are: i) lo state {1, x;m~1) with probability A,
ii) to state {(~1;,2; m—1}, for all subsystems { such that C}_(J:) # 8, with probability
. ti) te  stete (x;m--1), with  probability (1-A-u(2)) . where y{t}:,u}:f‘;‘ . 4)
Reward structure 1{z, m) (respectively v(z,m) } given by,

1 if My(z)2 % and m=0
f_(z:.m}:{ i 9}

ft  otherwise

and I if é(z)=] and m=0

Y(w, m) = { . (16)
0 if (r)=0

Now, let Hy(x)= n(x0) and H,(z)=r{£0). Then, the dynamic programming
equations for (TF, ) (respeciively (T} ¢1) , are the following _
i &
(st D) =max ([1-dep(@)] (mmpA w1 m+a . gl =1p5m) (g
m=l,..n-1.
e )= Bz} (113,
for j=1 (respectively for j=2} .

Let w,(z,m) denote the value function of a deterministic policy for (I, )
{respectively {II;, 1)) ; it is the unique solution to the following systern of linear

equations
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w{z; m41)={1-A=p(z)]w (2 m)+ A w (1 mes 5 m)-{-pé&l:‘ w (=1 x;m)

I(.l‘.

m=0,.. . .8-1, (1) s
wel#:0)= H (s} | (12)q

for j=1 (respectively for j=2). Note that the policies under consideration (e.g.,
equalizing etc.) have the specification that x{z,m)=x»(z) , for all m.

. We can now state the following

PROPOSITION 2.1. A necessary and sufficient condition for a stationary policy 1w
1o be optimal for problem (1 1) is the following

w,ﬂ(lrnm,z;m) > w,n{i,.:; m), V€S, Vi€ Alz)—{xy(2)} . m=0,1..,=-1{13),,

M Equations {13}, imply that w,ait;m} ; T€S, m=l,...n. constitute a
solution to the optimality equations (1l}, , m=l...n, which have a unique
solution.

m&w& A vecessary and sufficient condition for a policy x, to be the
. unique stationary optimal policy for the problem of maximiziag stochastically N, (4 2)
 (respectively Z_(t;2)) is the following

- Vre€ 8, 3my=my{r) such that {13),"0 is a stricl ineguality Vi€ Af{z)—{rglz,m}}.(14}

- PROOF. The claim follows from (8) and arguments analogous to those that lead to
: :' the definition of problems (M &)+ (T &3

.i l: REMARK 2.1. The system performance criteria we use lead to optimal policies with
rather strong optimality properties. In particular, all optimal policies for all cases of
.:. this paper will also be optimal with respect to the fofal expected disconnted pperation
fime of the system and with respect to the availability of the sysiem. To see this notice
{i) that for the strucluves under consideration, if a policy maximizes stochastically
N_(t;x), then it also maxiwizes stochastically Z_(#;2), and (ii} The total expected
discounted operation time of the system is given by ?a e ""P(z,( L2} =1)dt and the
| ‘availability of the system is given hy Tll_t;l;.q _11. I’g"*“}i(zi_{ i:z)=1)d1 .
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3. REPAIR ALLOCATION MODELS.

in this seclion we establish the optunality of the pertinent policies fur the rlasses of
systems iotroduced in Past 2. We start with the [KIN; (1IN} ¢ Nl sestem
Fiesr pote thet

Neltixhs My{z () (18}
wherr Mg(x{1)) = {{s: 5, {021} . We can now state the following.
PROPOSITION 3.1, {8} The equalizing policy marimuzes stockastically N {4z}, af

any time tnstant L (b}  duy pohey fhet 35 nod equabizing 5 siriclly worse thun the

equalizing policy.

PROOF. The proof is by induction ou m using (2.13}) and {2.12) in Lemimata 3.1.1,
1.1.2 below. The proof of (b} is given in Lemma 3.1.3 below.

For notational sivuplizity we will use the notation w{x,m) in place of w {z,m} when
there is no danger of confusion shout the policy we are referring to, for example, in
Lemmata 3,11, to 3.1.3 w{rm) will desote the value function of the egualizing policy.
in Leramata 3.2.1, to 3.2.3 it denotes the value function of the K — equahamng palicy,
she..

LEMMA 3.1.1. For the value function of the equalizing policy, the following relations
held for all permissible permutations of a state r,

weym)=w{o{zhm) form=@1,.. .. .0 {18}

PROOF. The proof is by finite induction. Wi first note thay, since M {2)= M (={s)},

w30} = u{o{a):0) {7}
. ﬁ X
Alsa, since hl:,m‘gt:’,!w we get
gl xj = plzoiz}) {18}

We nest shaerve that:

{-‘-i ﬁ.ﬂ:{iﬁ)) zt“ﬂ”"{l.}' 3;’“}{&}” »or IE“‘{E-I)‘ l'w‘ l(‘.)"'il‘:ﬁ"(]*l },- P, x_:,h:ﬁ.})
= Gy £} . Assuming that the lemma holds up to m ~ 1 included, we get

w(»—ll_.m{:};m—-l}c ﬁs{—lw,l{ii,:};m—l}m u(—lw,,{q.t;m--l) . {18}

Siuce @ is & permulation
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¥ . .
'L! ®_xeh w1 W,_m},r; meilm ‘i guwl=lpxm-l} {26

fn & similar to {19) way, she tray show that

wii_mizlim~l}=w{ol  shm-t = ol arm1 . {21)
But  then, equations (2.12), and {3} @ (7}, give  the  sesnlt, el
wzm) = wl={zim) .

We next prove the following.

Lomna 312 Y €50 7, <y, (.'-?{z} £8 (N # 8 the following Inegualities

.........

{a} wil oom) 2 wil; zom) {22},
(b} u{lc(,f},ij,:;m} > “{In{iks}"li':“m)‘ {23}
Prooe, ¥ z=z ihe result is trivial. Hence assume 2z, < ;. The proef s by

~induction. Fer mwd, by considering cases for Mgiz}, it s easy o shedk that {22}
and {AJ;,@. are (fue. Now, let us assumne they are Gue 4p o w1 ineludmd, To show

{223, we first observe that

atd prl=pi iy {24)
Also, since 7, < 5, 1; % -1 and therelore, {22), . for the state {~1,,7} implies

u{lj.—!,._t;mwl) 2 u{x;m~1) {28} ... ;
M3, # 6 i oasimilac way for the state {1, x}, we get

wlzsm-~1) > n{li,-lj,x;mwl) {36,
Now, whethee z;:=20 or not, equations (38}, _ , and (26}, _, Jend 1o

{3;- }}u{r.m»l}% T, lj,l,,r, m~1} <

{#;—x }m{ Lidpaime1)43 (1,1 ok m-1)} (27 ¢

which in turn, together with {22}, for the state {1, 2), gives

H E o =1yl o omedbplz e me ] Mg wl 100 e 1
f=1

PFE G

?,u? sul~1,1,, :m-—i)+u{:i+i}wir,-mmi}-i-;wjw{'--.lj-_,ii,z;m---i} {*8), . 5

izﬁm
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But then, equations (23),, _,, and (28) _; establish (22),. (notice that Lemma 3.1.1
is also used).

To show (21),,, we first notice that r“t-lia_} > Ty a0 and then we consider cases,

Case 13 oy 3=, 2y Thes, u'{l““_ja.};lj,x; m):u{l‘,”_‘_ﬂ,lj.r; my by Lemina
J 4 t A S
3.1.1, and hence {23),, follows from (22),.

Case 2: a:a“jz} > :alii«-e‘r

Lemma 3,11, w{l,,{l_‘ﬂﬂi,z:_;.,rr:}:u.{l.j_,ll-,::;}_n} > Then (23}, becomes
w[lﬂ“jw},lj.r;m}}z w{l,1;z;m} . This is true by (22}

it

Then we necessarily have Zafa )= 55 2 and hence, by

since, for ithis case,
3?«{1‘,:J=Ii+i < #;. Therefore, the proof is complete,

REMARK 3.1, {a) Lemma 3.1.1 and part (a) of Lemma 3.1.2 estabiish the optimality
of the equsalizing policy since they suggest that: (i) at stage m+1, ii is better to assign
the repairman to the subsystern with the least arnount of working components and {ii)
if there are ruore than one subsysters having the same {mainimun) number of working
components, then, it is irrelevant io which one among these subsysterns, the repairman

is assigned.

{h} We make two observations about the value of (I, ;), which sy be proved
directly from (%11}, using induction.
{i) For k=0, {rym}=1 asexpected, and,

N
{it) For k=1, 1{r;m}:—-§1{£3,;w}, and hence, all policies are optimal in
. =1
{1y )

{e) If the stracture of the system is the fvivial {1|N; (FIN}y., Nl Qe everything
s connected in parallel, all policies are clearly the same with respect to the total
expected discounted operation fime of the system or its avaiability. This corresponds

1o the case of k=1, above and (2.6) or {15] below is an equality then.

We next state the following lemanus which esiablishes the unigueness of the form of the

aptimal prlicies.

LEMMA 3.1.3. There exisis my > @ such that, for k> 1, inequality (22),, ir strict,

L€,
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Ve€8: 2y <x, CYD#0, CUD#8 Imy 2 0wl zm) > ullz;m)
fm > my . (28}
PROOP, See Appendix A.

‘e mext consider the [N|N; {K’“‘%lﬁ n] system. Note thai given a policy ,
-y

e structure of the system implies that the random process Z_{t;2). which describes

e operational status of the system (reliability) at time ¢ if the state at time 0 was g,

given by

L if Mla{D))=N

2',,((_::]:{ > {30}
0 if Mz (1)) <N

where, Mylz,(0)=18: 7,.(1)> K’} | . We next establish the folfowing.

-I?HQPQBI'H(}N 3.2. {a) The K'—equalizing pelicy wmanimuzes the probability

plt)=P(Z (t;2)=1}) at any tinie instant f. {b) Amy policy that is not
- K —equalizing is strictly worse than the equalizing policy.

ggggg_ For part {a) we establish (2.13}, , m=01,...,a~1. For m=0, the prool is
 obvious. The induction is completed using (2.13) and (2.12) in Lemmata 3.2.1, 3.2.2
j;gf*:ﬁéfmv. The proof of {b} is given by Lemma 3.2.3 below.

‘We need the following nolation. For any state r define L{s, K'}h={l: ; <K'}.

LewmMA 3.2.1. {3) The value remoins constant over afl permssible permulelions of a
 state Z, 1.8
w{z; m)=uw{w(rhm) for m=9,1.....0. {31}
{b) For any fwo siates r and y for wiack (i) Hz, K)=L{y. K, (i) 3. 3= ¥ g
<K' <A
and (iii) 5=y, YI€ L{z, K}, we Aave sl
w{rm)=w{ym) for m=01...n (323
- PROOF. The proof of part {a) is omitted as it is stinilar 1o that of Lerama 3.1.1 with
the only addition that it also uses part {b). For the proof of part (b), let

KK y=I{z, K} (=L{y, K}). The statement is then trivial if i=y=~K" for all I€ L{(K"} .
Hence, take 7 and j such that 2, < K and ¥; < K'. Then. states “"h"{‘!' z) and
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(1 crm,y} satisfy assumptions (i), (i), and (3ii). Also, if 1€ L{A"), (=1} 2} and (<1, y)
cectainly satisfy (i), (i), and (iii}. Finally, for any L7 € I{K) (~1p2) and {~1,,4)
agaia satisly (i), (ii), and (iii). Part (b} follows then by using {2.12)_ and finite

induction.

LEMMA 3.2.2. V2€ S: 2; S 2, CYx}# 8, CX(x)#9 the following inequalities ave

true

{a) m{lj,s:;m} > w{l;,z;m} (333,
(b.] ”‘ilam{-ljg.)n‘yﬁm) 2 m{jﬂﬁu{ii#-)’li’m mj . (34)m
PROOF, The proof is aloug exactly the same lines as the proof of Lemma 3.1.2. The

anly difference is that in proving (34),, and after assuming, without fuss of generality,

that z; < z;, one has to cousider three cases.

Case (1): I ;< K, then 2, < K* and {34),, holds with equaiity because of Lemma
3.2.1.

Case (i): If ;> K but £, < K, then

{a} IT z= A1 and } jiis non-functioning, then there exists & # 1,j with 1 < K. Then,

ul atep i we may choose @ ﬁ’{li".}:k‘ Because of Lemma 3.2.1, we then ﬁa.ve
“{Iuﬁ;jjx}.«lrr; mlzul i, 4z m) (35)
(331, then gives
w1 eim) 2wl Ezom) {36}

{35) and {36) establish (34) .
(h) H zp=K"-1 and Lz is functioning, then a'ﬁ,‘[_liz_}mj while we may also choose
{1 j5)s=). Hence, using (33} for the siate (1;,2) we are bud to

m(lay(.if}ﬂj,r; my=wl gl szmy > w1, 8 m}zu(lum{l‘:).l,,z;m} {37}
fe} H z; < K'~2, then both (1,2} and {12} are von functioning and hence, we may
choose a (1 2j=u,.(1 =) which establishes {34)  throngh (23). Finally,
Case (fu)e I 2; > K" and 2, > K', then
{a) I = is not fusctioning, thens both (1 3-.-4:') and {1,.2) are non functioning. Hence, we
iy choose & # 47 with &, < K7, so that iy d p)map(lej=k (55) and (48} are then
valid and (34}, follows.
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) If & is functioning, then (1,2} snd (1,7} are functioning and hence,
1;5)=a{1;5) and a.(1,7}=a(l;x) . The proof then is as in Lemma 3.1.2{b}.

BEMARK 3.2, {a) As in Propesition 3.1, Lemma 3.2.1 and part (a} of Lemma 3.2.2
¥-\Wmh»lish the optimality of the K" —equalizing policy since they suggest that at stage
41, (i} if the system is down, prefer not to assign the repairman to an operatinnal
“subsystem and then it is irrelevant to which non-functioning subsystern the repairman
s assigned, but otherwise, (ii) it is better to assign the repairman to the subsystem
th the least amount of working components while, (it} if there are more than one
beystems having the same (minimum) number of working cowponents, then, il is
irrelevant to which, among these subsysiems, the repairman is assigned. Henee,
.13),+.y has been established.

} If the system is N-out-of-N and all subsystems are N'-out-of-N' | i.e., everything is

gonnected in seriss, then all policies are clearly N'-equalizing and optimal.

We next state the following lemma which establishes the unigueness of the form of the

LEMMA 3.2.3. For auy state 7 in 5§ the following inequalitics hold,
:5}"7 If € B, then for 2;< K and 5,2 K such that C3(z) # 9, C2(z) £ 9,
dmg 2 82 w{ijaim) > uw(l,xim) Vm > my (38)

{i} If t€G . then for z; < 3; such that C?{x:};‘- 0, C2z) £6,

Smg 2 0 w(l jvm) > w{lzim) Ym 2 mg {39)
PROOF. See appendix A.
We next consider the [L{N; (K'[N'),, nl system. Given a policy r, the

Structure of the system implies that the random variable Z_(4;z), which describes
the operational status of the system al time 1 if the state at time 6 was 7z, is

b My(r ()21

Z,.,(l;:}z{ . (40)
6 if Mz {t))=0

 where My(z (=1 5y(02 K-
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W puxt show that the propeety of being tneguahorag characterises aif optimal poliviss.

PROPOSIIION 3.8, {8 The wequalizing  policy  mammuzes  the  probudifity
plle)=PE{irainl) of any tme wmslont & (hY For 8'> 1, ony pohey thed s asl

inequuhsing i» strintly worse than the inequalinng policy.

PROOK, As it the previous propositions, the praof of {a} is by induction on m using
{2.13) and {232} and is dose in Lenmaia 3.3.3, 3.3.2 below. The proaf of (I} is given

in Lesvma 333 belose,

LA 331, The wvalwr of fhe tucgualinmg pelicy remaing conslont ower gff

e

prrmissible permudations of @ slafe 1, e,

wipaiww{w{ey e} for m=dl. a

.
e
o

e

Proar. The vesuli iz easy o see.

LEMMA .32, Vee 8 oy S g, CIRY AL X} £8 the fallonang ineguabifacs are

: 5
drae
{) w{i parm) £ wll e m) (42,
{b} t;‘i'{ih[: 14&)’13."1.’-" mp < wﬂb’{'i.i Lpladim) {48},

s

PROOF, The proad of (a) s ddentical to the proof of Lenuna $.1.2 {a) with the sign of
all sumbered tnegualitios reversed. To prove part {hi, we consider two cases,
(1) ] & << gy, then Tamams 3.3.4 and (42}, establish (43,

) IF oy, then

%{_15{_5_1:-},.3 primpme{i,d e m) {44}
Al then, Zy 1} 2 &5 8o, (48}, folluws by using {38),, on {48} for the state (1,3} .
REMARK_2.3.1. {5) Derama 3.0 and past {a} of Levones § 3.7 extablish the optimality
of the inequalizing pelicy with e wwusl srguraent,
(hi I K=, remark 31 (b} ix valid sad alt policies are eptival,
We neat stale the Tollowing.
e 338 For say state z i 5 such that 2; < 5, ﬁ?{ %8, Cla)# 9 the

following ix teue



MAL MAINTENANCE OF SYSTEMS 153

3my 2 00wl jrm) < w{igam) Ve > my {45}
. See Appendix Al

pext consider the [KINc{N{NY.,  al system. Given a policy w the
ture of the system implies that ihe randory varable Z {#;2) . which deseribes
reliability of the systemn at timme ¢ il the state at time 0 was z |, is given by

10F Mz () >K
: 2,(!;:;:{ . (463
§ otherwise

Mz {t)=1{i: z {0=N}] . The main result is the Sllowing.

34, {3} The K- megualing policy wmarimizes e  probalility
Pl e)=1) at wny time mstent L. (&) For K » 1, any pobicy that s not
Ineghalizing is siniclly worse than the equahining policy.

OF. As in the previous propositions, the proof of {(a) is by induction on m using
3} . {2.12) and i= done in Lernmata 3.4.1, 3.4.2 below. The proof of {b) is givea in
ma 3.4.3 below.

state the next lerma we need the following netaiion. Let Az K be the set of the
K subaysterns in order of the number of their functioning components.

{2} The value of the K —~ megualizvng policy romgine consiant over alf

Ma 3.4.1.

yssible permulafions of s state 2, e,

wzrml=w(wizhm} for m=Q,1.. 5 {47}

Y = ¥ ow € KN, wehave w{rimdsw{pm) for m=0,1,..,n {48}
€ #MsXy 1€ MixK)
IOF. Part {3) is obvious. Part (b) i also ebejous if (i) is an equality. Thus,

—

_ M@ VieS: ¢, 51, C‘g{:} # 8, Cif‘(r} # B the following mequalitics are
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3my > 0 w(l jerm) < wl erm) Vm > my {45)

PROOF. See Appendix A.

ﬁa next consider the [KIN({N N}, i system. Given a policy x, the

trocture of the system iruplies that the randorn variable Z {¢i2) , which describes
the reliability of the system at time ¢ if the state at time 0 was 2z | is given by

1 Myle () >K
Z(1: t}:{ . (48}
0 otherwise

where M ir,()=1{i: r {H=N'}{ . The main zesult is the fallowing.

m;_q_ {a} The K- megualining policy maxhmizes the probability
§(i,x}..l’(é"{l r)=1} al sny time mstent . (8} For K > 1, any pehcy that 1 not
.x» fnegualizing 1w sinclly worse than the equahang policy.

PROOF. As in the previous propositions, the proof of {a) is by nduction on m using
{13} , (2.12) and is done in Lenmata 3.4.1, 3.4.2 below. The proof of (b is given in
Bemma 3.4.3 below.

’i‘o state the next lerama we need the following netation. Let M{z. K} be the set of the
?M R sutwystems in order of the number of their functioning components.

LBMMA 341, (a) The value of the K — inequalizing policy remaing constant over all
(permissible permulafions of ¢ sfate 1, ...

w{r;m) = wwlzhm} for m=9,1.. .5 {47}

b} For any two states z snd y for which (1) 1= YIg M(x, K), y=0 Y M{y, K} snd
WM > = ¥ < KN, wehave w{z;m)=w(p;m) for m=0,1...2 (48)
. A€M K) 1€ MK}

PROOF. Part (a) is obvious. Part (b} & also obvious if (i} is an equality. Thus,
‘smsume that both r and y are non functioning states. Then, states { I&R{,i,z} aned
{i;x{,), ¥} satisfy assumptions (i} and {ii). Also, for aay (€ 32, K}, 7€ My, K} such |
5 > 8 5p > 0 {1 7} and {1, p} again satisfy (i) and {it}. Part (b} follows then
M’ using {12),, and finite induction.

m_.;, ViES: g, S5, Y #D CHn)#£9 the following inequaiities are
lrue
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{a} w{i;-,r.; m) <« w{l 2ym) {49},
{h) m{lb&{,jr}.ifz";:m} b u{i%{i.“).ii.t; m) (58],
PRoOP, (33}, is proved in the same way ss (42), . Because of part (b} of the previous

lemamna, to show (36) it ix sufficient to show u{i&hf:"j}-,z;m) < “‘EI&UF}J-'!"" m) .

This is done in a way similar to that esteblishing (44),,,.

BREMARK 3.4.1 {8) Lermata 3.4.3 and 3.4.2 (a) prove paet {n) of Proposition 3.4
since they snggest thal at stage w41, (1) if the system is down and thewr are less then
K subsystems with functiosing cornponenty, then it is irrelevant to which non
functioning subsystem the repairman is assigned, while, (ii) if the system s down and
there are exactly A sulmystems with functionisg eonponents, then prefer not to assign
the repairmasn to a sibsystem with so factioning components {agd theq it doesn’t
watter to which non functioning subsystem she i3 assigned), but otherwise, {i{i) it i
twtter to axsign the repairman to the not functioning subsysters witl the largesi
amount of wowrking cimponsnts and then {tv} if there are more than one such
subsystenss having the same {ruaximon} swwmber of working components, then, & i
ireelevant to which, amony these subsystims, the rtepaimman iz assigned. Hence,
(2.38) 4 q Das beeg established.

{b) M K=N, Le. evervthing is connected in series, then all policies are clearly

K ~ inegualizing and optimal.
The proof of part (b} of Proposition 3.4 Is gives by the negt lerona,

LEmMsA 342, () Vee B (e {=K andxpland 8 <z, < N

ey 2 & vl pamd < wl{liamg Vi 2 omy {81}
i} Vag 3 [ Rl > K, awd for ¢, < 2 such that {f-g(r} # 0, t‘.}?{x} #8,
Img 2 0 w(ljrim) < w{lm) ¥m > ooy {5%)

PROOE. See Appendix A,

4. CONTROL OF ARBIVALS IN QUEUES.

In this sciion wa estabdish msulls (Lad to (2b) nteodused @8 §1. Hecull that the
Mackovien desision pracesses formplaticss of 52 remaing valid with the ouly difference

bring that of wterpretation, A decision is suw 3 decision about an arrival assignment
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the components of the state vector 2, 2, now dencling the number of cusiomers
ver i, We need the following notation. Let N {12 denote the number of dfe

vers at Lime 1, given the initial state z when policy » is used, Also we define

S Ln=PE 5 (0 <K} 5 0)=0) (63}
jrt?){f,r)ﬂ‘i{x,-,(!l < K, il N 2,(0)=2) {54)
pR=P i 2 plO=N] <K [}] 20 (55)

1hiat pi'h {.z) denotes the probability therw is atf least one server wnth less than K,
K o« NI custorners (for d=1), the prodadibty fhaf alf servers dave less than K,
K« N, cusforners {for i=2), the probubilily that there ore less than K servers
. ing at full espacity (for i=3), at time 1, given lhe policy x ond the wutisl
fx

e rusin tesult @ U following.

4.1, {4.1.a) The cqualizing pulicy wimpmises sfochastivally 3‘,{t,x‘j wt

fime wstant

.;.l;':} Any policy that is nel equalizing 13 strictly worse than the sguolizing pobicy.
2&) The K ~ egualizing policy mimmizes the probakility pil){t,rj ¥, VK,
B <N

::2;5:!} Auny policy thal 1s nef K — equalizing s striclly worse than the K~ egualiding

) When Ni=N', Vi, we haver {a)} the meguslinng polivy mrmmies fthe
vhability pf)gt,r), ¥, VK, < K <N and {3} for K'> 1, any pohey that is aad

ralizing iy stvictly worse ihan the equaliomg pelicy.
3} Wihen Ni=N', Vi, we daver (s] the Koisegualiomg pelicy mowawmizes the
bility p?}_ﬁ,t}. Vi, YK 0 <K <N and {b] jor K > 1, any pobey thal is nat

xegualising ¥¢ sirectly werse fhan the ryvalinng padey.

OOF. For case {4.1) the key idua is to obsave that
RN (0=N, Vi, 5, 7, (56}

e N (tr) vders to the roward steucture of the reliability problom of ewse (LAY

The result follows frem Proposition 3.1, For case (4.2} note that

.il)(!,r}%pﬂi{i',x)zl s Nt B w (57}
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wre p_(tn) refers to the reward structure of the reliahility problem of case {1.B).
e resuli follows from Propesition 3.2, In a similar manner (4.3} and {4.4) follow

i Propositions 3.3 and 3.4.

IMARK 4.1. The problems of maximizing the quantities that are considered in
aposition 4.1 are also well defined. Using similar arguments as in §3 we conjectire
al one can estabiish the following. The inequahzning policy marmmuzes séochastically
Az} el way time instant 1. The generalization of the lnequalizing policy that
ays grves priorily lo the server wath lavgest N mozimizes ;}ii}(i,:r}, ¥, YK,
<K< N, When Ne=N', Wi, the equalizing policy wmuzimazes p{i)-(-i.::-}_, Yi, VK,

x
¢K .« N, fori=23.

Appendix A.

oof of LEMMA 3.1.3. The proof is by considering cases and makes use of {2.12), ;.

, take k> 1 and consider first

bease ia: M{x)=k-1. Then, for the present case, we necessarily have M ( _1_5,3.*}:-&
1 My(l,.zj=k-1. Hence, wil,2:0}=1, w{l;#0)=0C and, using {212}, ., we
whade that (3.15) is Lrue with my=0.

bease 15 M{z)=k. Then, let x =min{z 2 #0. {#£i}. 1, is well defined since
>, My(zj=k and &> 1. Then the claim is that w{l j%i3,) > w(l;,z;7,) and hence
15) is teue (hy (2.12),,,,) with mg=x,. The proof of this claim is by induction on

For x,=1, w{l;~1, )=, since Mﬁ('ij;.nt 0=k, and wil, =1, 2:0)=0, sifnee
{11, eh=k=1. Hence, from the backwards part of (2.12),, w{‘jﬂ:‘ﬂ > wl;z ).
mme  the oaim is true wp te z=p. Then, for z,=p+1 we have
ij_.-—ly, p)> wl,—1,.5p0) and hence, using (242}, 440
L_,-.x;p—%l} > ufl;, zp+1).

scase 1o Mylz)y=k-r, r=1,2, . k~1. {Observe that the case M (z}=0 is of no
srest, simoy by Lemma 311 the equalizing policy 18 then indifferent to which

nponest the repaivman is assigned). Then we show by induction on r that for

fd,(:):.‘é—r, rel, 2o k=, 0= ;< implies ugl ;2 r-1) > uizrr—1) (1},



MAINTENANCE OF SYSTEMS 157

because of equation (2.12), implies that {3.15) is valid with my=r~1. Te show
first mote that for r=1 this has already been proved as subcase la. Hence,
that (1), is true for r=1,2,..., p and take z with M (s}=k~p~1. Then, there
to be al least one more systemn with all of its components failed except . Thus,

th

'ﬂ:ﬂ.-ﬂfcoum, 1‘“{3’_:1'—-"9 also. Now, at state { !,‘1,.,1,:) the j* systern has all of

components non functioning and ¥ é(lqu_,},-zj:i*p. Hence, (1), implies

w{l 10 jz}:r-'f‘“l} > wilylag J-:):fs'.ﬂ—lfi {2)
.s_luo_e T -““‘5’}:‘, and Zo(1, )=V Lemma 3.1.1 implies
WG1;‘1,;“,},:;)0-1J=W(1.-.lu{;‘.,]_.r;.9"-1} (3)

and (3) show that (3.9),_; is a strict luequality which in turn implies that (3.8}, is
strict ineguality. This establishes {1} .

Subcase 1d: H‘t,(x}mh-r, r=0.1,..., N—k. Then, since &> 1, there exist at least r42
ms with al least one functioning component. Hence, the following recursive
inition  is  wvalid:  Let ‘vl=“‘i-“{’r-"# #0,1#1} and, provided r>0,
1=min-{af:r.::‘[ #0, 14, vy, ..,vg} for £=1,.., 7. We show by induction on r that

T Méa’asi:.b«}-r r=0.1,.. ., N-k 0= z; <z implies

: r41 .
jl:! E 1’ ) > W(]..,I, E (4)1’
r+l
_und, as in subcase lc, lhm is cnmxgh to establish (3.15) with my=3 Ty
=1

S Jo is true by subcass lb. Assume then that {4) is true up to p, for 1 < p < N—k~1,
fd take z with M ()=btp+1. Then, Méﬂ—yy ,::)-.l.-i-p, where y=r, <4 and
ence, {4), implies

“’(ljr“sy x.zz‘,) w{iy ~By 10" tgz:lz"i}'”i (5)

5} shows that mequaht}' (3.14), is strict, where C—*Ex and hence, (3.8).,, is
£=1

pil

U( J"'"{y"'l}y :ta Z Ty +1) > IE(T.., irl} ,:;’f:lxvt-]-l}.
€=l ~

} (6}

s=1
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Close 2 2,20 .

The. proof is by induction on the number of working components of system j (i.e. z pEY
state . {3.15) is true for ;=0 by case 1 and {or my as above. Let us assume (3.15) is
true for x =i and for my=v+ ﬁl;\' o+ k2. Take then z with » =v+1 and consider state
(1, <) . Becanse of the inductive hypothesis, there exists mg such that for m > m,

g ) > w(l;~1,,2;m) {7}

Now, {7) 1s £3.12)_ in sirict forra. Hence, since > f), (3.13),,, is strict and therefore
(8.8)41 18 strict, Hence, (1.15) is true for m > mg+1. This completes the inductive
step and shows that (3.15) is true with my independent of 2. In particular, we may

lake m0=2§ Ni+b-2.
i=}

Prool of LEMMA_3.2.3. Because of equation (2.12) and Lemma 3.2.1, to prove (3.24)
and (3.25) it is sufficient to find mg. Strict inequality will then automatically hold for
all m>mg To prove (3.24), we show that for a state r such thay Cjlz) #8,
C?(z) #£8, M )=N-r, v=1.. ,N-1, 2; < K and 2; 2 K7, the following  inequality
holds

m(l,-,x;r}t"w S on-1) > w{lnrkK - Y z-1) {8)
2 < K nak'

‘T'he proof of (B} is by finite double induction on the number of failed subsystens at
state 7, v, and on the number of failed components necessary for the operation of
suhsystem j, s:=K'wz;. Call the corresponding fo v, s inequalities (§), , and first
consider the case in which r=1 and s=1. Then My(l;2)=N, while Mﬁ{ll-,;}::"f-l.
Thersfore, w(l 20 > w(l,#;0} and (8}, ; holds. Now, assume (8}, is true for
=zl and s=1,...,0, We show it is true for r=p and s=a+1. ludeed, for the state
i1 ,,x} we have My(2 ,-_.:}:N—p and the number of failed componenis necessary for the
operation of subsystem j is 0. From the inductive step we conclude that

w{llmph~ T 5=2) > w1 l,5pK~ ¥ 2-2) )
t}(“‘ .r,(ﬂ

Now, we miay choose a,.(1 ;2)=n(1,3}=1. Hence, (9) becomes
w(lak,(;_.,-g}rlgsm;pﬁ” "'__ﬁ‘%:“,*‘;*?) > o 1aﬁ,('ti:)lljrli!rh"ﬁ""x‘(zafl"’g,) (10)
which leads to (8), , 4 by using {2.12) and the inequalities (basically those concerning

the forward wotion of the system) involvsd in the proof of Lemwma 3.2.2 . The next
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is to assume the validity of (8) for r=1,...,p and any s and show it is true for
I and s=1. So, take r with r and s as above and consider (1,.z) . We have
(1;,2)=N-p. Then, take any non functioning subsystem » at state (1,z). The
dity of (8), unplies

w(l, lpnpK= 3 g-1) > wllybzek’~ 3 z-1) {11}
.t’t:ﬁ‘ "(ﬁ“
145 I3

choose a {1 z)=v and a.(1;x)=) to transform (11} to

w1 oz pK = Y 5=1) > wil lampK—= Y g-1) (12)
NagliEyd < fﬁ't‘ aplge) e 2 < K
i#3 1£J

.:.' using {2.12) and the inequalities involved in the proof of Lemroa 3.2.2, gives

wiempk~ 3 ) > w(l, 5 pK- PR (13)
2 < K' g < K
i#5 1#)

_.kim:-e 2;=K'~1, (13] may be rewritten

()K= L g-1) > w(lun{pr K~ 3 3-1) {14)
< K < K

(i4) the proof of (B) is complete. To prove (3.25), we show that for a state z
b that CO(x) #8, CY2) #8, My(2)=N, 7;=K"4r, r=0,..., ¥;~K', the following
juality holds

w1l > w({1;,2: 741} (15)

proof is by induction. Since (=1 ,2) is non-functioning, for =0 we get w{z;0)=1
cw(=1,1,5:0)=0. Therefore, using (2.12) and the inequalities (basically those
ning the backwards motion of the system) involved in the proof of Lemina 3.2.2,
deduce thai w(l;,x:1) > w(l;z:1) . Now assume that (50) is true for r=0,...,p.
n, for z=K'4p41, consider the state {(—1 8) . The system is functioning and the
subsystem has A"+p working components at that state. Hence, from the inductive
we get u(arp+1) > w(~1,1,2:p+1) and therefore, using the same argument as
%e, w{lj,.t;p-m} » uw{lg e p+d) . With this, the proof of (15) and the lermma is

3.3. The proof is by considering cases and makes use of (2.12),,,,.

15¢ 1; The i-th subsystem is not functioning at state r. Then, we show that my may
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e taken to be

mg= 3 -z ~(My(z)-1)(K'-1} (14)

The proof 35 by simultaneous induction on S-!’lp(z'}, z; and 7, where z,==min{g:
5z K} Of {m o2 K f=l, then x,=0) . So, lot fiest My (2)=0, =0 and ¢=&"-1.
Then, w{l 3,1!_:{?} =0, wil,,2:0)=1, and {16) is valid. Assume now that (16} is valid for
Myla)=0 and z=K-(r-1), 7=2.., K (of course x,=0 then) and take z with
Myle)=0  and  g=K'-r. Theu, Dby considering state (I,2), we get
i §

1,20 r=-2) < w{2,, 2er~2) which leads to w(

il grr—E) < w(i,zr—1) . Henee, (16)

1.
¥
is trve for My(a}=0 {and #,=0) . Second, let M{a)=1, z,=K" and x=K'-r
r=1,... K. Then, for {~1,.2) we have M, {-1,2}=0 and hence, from the first step of

the induvtive prool,
w{~1,, 1,8 K'—r=1) < w(~1, ;0K -5~1)

which dnuplies w10 K-x) < w(l,o F—z) and therefore (16) is valid. Assume now
that (26} is teve for Mq(,{'z-“;:wl.. 22K 51, =}, . N=K, and g=K-r =1, K
and consider & with My =1, #,=R"+s, and 5=8—r. Then, the inductive bypothesis

Jeads ta
w(~1,, 13,2:_;.&’?'—.}4 s=1wn) < wl{=1,, b2 K'+e-1-z;)

and thus w{i o K bs-z) < w{lpm K4s—3;) . Hence, {16} is true for My(a}=] and
z=K—r, v=lo, K . Thisd, assume (16) s true for My(z)=v and x=K'~r and
consider = with A ¢_(:}-.= w41, and £=K"-r. Then, for g, =K', consider {~1,,2} . This
state kas » functioning subsyslems and hence

L I ;Aiz;‘-,——as“-—-—-ziw(u-—‘i}{1{_’—1)_}<_e.¢_{—!_‘,,1_*-.::; I Tt A T g 8 e B
;C'I"_

% > K
which impliss

w(l;e; 'EK g g { -1 A-1+1) < il _E}t_}sqw.sp__ = {u=1}{ K" ~1}+1)

Q:I x] o

But sinee,

T ap ez {u= K D ls Y mpeppen{ A1)
z 2 K 2 K

we conclude that (18} is trae for M (#)=wtl, r=h'wr and g,=K. Next assume that
{186) is true for Md(z:}mu-é-i, =R —r and 2,=K"+s~1, szl N~ K and consider ¢

with é‘/f;ﬂ{_q‘:}.:gﬁ;l! :;,~:K’--r and r‘_,:ﬁ’#a-.,s._ Then, the wth subsystem of (~1,.7} has
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#--1 operating components and hence, with the usual argument,

N . .
L ey T geleneu(-DH) < ullyn §og-legea(B-1041)
§ 2 K rp 3K

establishes (16) for My(z)=u+1, zy=K'~r. But then, (16) is true for any M{z)

arbitrary &;, provided the sth subsystem s non functioning. This finishes Case 1.

R

2: The ith subsystem {8 functioning at state 2. Then, we show that mg may be
1o be

s

iy 2 oMy A'-1) {17
3’] K‘
proaf is by simultaseous induction on  My(x), r; and z,, where 7, =min{n: {#£ 4,

K'). First, we eatablish (17) for My(s}=1 (and therefore, 2,=0) . For =K',
£} has the ath subsvstern non functioning and therefore u{l}!,_li,f‘;g}_-;:ﬂ_,
=1, which impliea ?H{i};.:l?;.l}_ < w(l,%:1} . Hence, (17} is valid for r=K". Next,
me (17} is true for s=K'+r—1, r=l..., ¥~K and consider a state x, with
=1, 2;=K'+r, Then, with the usual argument using state {~1;x}, one may show
w(lyeredl) <w(iperdl) o Bo, (17) s true for all ¢ such that My{z)=1.
d, let My{2)=2, 5 arbiteary, and z,=K'. From the previous step we get

S O e K+« w1 z x,~K'+1). Thus,

widp
20 K4 2) < w25, K'+2] and bence, {17] is true for 2,=RK". Assume (17) is
for z,=K'+r-1, r=1,.. N-K'. Then the usual argument ivaplies thai {17) i lrue
w= K41, which finishes the case M {r}=2 . Third, assume thet (17) is velid for
J=u, u=2..,N-1. By comsidering {-l,3} for o=, K+4l.. it is
ghiforward to establish {17) for M@,(r)xu-ﬂ._ This Bnisties the induction for Case
the proof of the Lemma.

fof LEMMA 343, To prove {3.37), we show by backward induction on

= ¥ 3 that we may choose
L€ Play

W= BN -1 (2} {18)
f H{e)=KN-1. Then, w{l e W)=0, w{l,r0)=1, and (I8} is true. Assume (18) i
for U{xy=KN'—r+1 and take 7 with U{2)=KN'~r. Then, U(1 b_gflf}"ﬂ:gw ~ppl

henee
Lyt ey W K=rb1) 2 0Ly gt KN rt DLy gy oy KN =r41)
ieh lm])li!i‘ﬁ the tesult for U{e)=KN - . To prove {2.38), we consider cases,
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Luse (1) My(2}=K-1.
Let »,=max{n: 5 < N} Using induction on both 2; and z,, we show that we may
choose

xl.v'
mg= Nz ~14 ¥, 1 | {fope 2= ]| (19)

ﬂ=xi+

Lot first z=A~1. Then, w(l; 2;0)=0, w{l;2:0)=1, and {19) is true. Assume (18) is
true for zz=N-—-ril and take 2 with #;=N'-r. Then, z, takes values in [z,
gl w B N 213 ). | 2=z, consider (1%} . This state has N'—-r+1 functioning
coraponents at the zfii; subsystem and hence, wsing the induction step, after noticing
that for this case my=N'—(z41)-1=r-2, we conciude that
u{l,, L0 r=2) < w(ly, 1,0 r-2) . This leads to: 1;:[11,1%‘{-1#_}.1:; r-2) <

‘ltﬂ.{l;,tbﬁii‘.x",z;ﬁ—?j , henee w{l o r=1} < w(l;,zyr—1} and thus (18) is established
for z;=§'-r and z,=r. Assume now that {18} is true for 4;=N'~r and 7, =¢;+u~1 for
u=l, o, N-z;~1, Then, take » with z=N'-r and ¢, =2 +u and consider the state y

which is defined by

£ ifg<a,
3‘;3"—{

r~1 W=z

Then, from the indueiive assumption we deduce that

@ ~1 ¥, 1
Wb N—n=t+ 50 | o =0 J{} < (i@ N -g—l+ 2 e 5=9 }§)
st o=rit1

which tplies

&, T,
vf-t‘i.,-,-:;ff’-'-—:.s:;—']"‘"g '.E'H | fopr 5l }]) < w{lym N——14 35 1;{:1.- =0 }{)
=x.
1

==

This finishes the proof for this case.

Case () My(n) > K.
Then, we use induction on  My{e) to show that m, may be chosen by

- Nyl
mg=N=zt Y | fayr oapd } J+ M-k (26)
C =zt )
Take first My(2)=K and let v be any functioning subsystem. Then, M{~1,,2j=K=1

and {19} implies:
Ne=1
Wiy =lm Mgt 3 | (3 =0 )] <
’ s+

e
2 + ¥ J':;!
wl=aN-n-1+ 3 {5 =8 }},
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is sufficient to prove (20) for M (c}=K. Next, sssume the validity of {20) up to
r)=K+r—1. By examining (~1,,7), where v is any functioning subsystem, it is
ghtforward thea to check the validity of (20 for M(x)=K+r.

{3) M(x) < K~1. Let then Pi{z) represent the set of the k first subsystems in
of the number of their functioning tomponents. Since we are now dealing with

§, Pp(2} C P{z) . For this case we consider three subcases.

ase (3a): 7,=0 and 1€ F(z) . Then define Upfa)=3, ¢ PR - Using an
ch similar to the one that proved (18}, one may then show that it is suflicient

gose mo=KN-1-U.{3) .

; dease (3b) 2;=0 and i Fi(r} . To proceed we aeed the following. We osder all
wubsysterns according to the nurmber of their functioning components and we denote by
> the order of the fth subsysiem (e.g., by <5>==1, we mean shat the Hth subsystem
the largesi amount of functiowing components). Then, we consider the state y
by

2 Tgi>c K
y!___{ z~{z~x,) fR< << <ix,
% otherwise

ate y satisfies the assumptions of subcase {3a), hence,
(1,0 KN -1-Ul9)) > wll, BV -1-U(y))

: %
ich in turn implies the validity of (3.38) with m=A¥-1-U )+ 3 (z-z).
: LAo=K

sbrase (3c) z; > 8. Then, consider the stale 2=(—z,z} . The relative arder of 1 is the

Same in 7 and z, and 2 satisfies the assampiions of either subease (3a) or subcase {3b).

ufl 27 mg) < wl;aimg)

here the present my is the my of the correspending subcase inecreased by z;
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