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Two types of tasks are to be scheduled on a single processor under incomplete
information about the task lengths. We derive the structure of optimal sched-
uling rules w.r.t. flowtime, as well as asymptotic approximations for a large
number of tasks, when the length distributions belong to a one-parameter ex-
ponential family.

1. INTRODUCTION

We study the following version of a scheduling problem under incomplete in-
formation. There are two types of tasks, denoted by E; (j = 1,2). Associated
with a task of type E; are i.i.d. random variables, which model the require-
ments of the tasks in terms of processing time. There is a single station avail-
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able for the processing of tasks from both types. Only nonpreemptive
sequencing is allowed. The objective is to determine a sequence for performing
the tasks, so that the total expected flowtime is minimized. The solution to this
problem is known when the probability distributions of the task lengths are
completely known (see, e.g., Baker [2]). In this article we assume that the char-
acteristics of tasks from E, are known in advance, while those of E; are not;
i.e., type E, corresponds to a process presently in use, while E, corresponds to
a new process that is to be evaluated. In Section 2 we postulate a prior on the
unknown parameter of the second type and formulate the problem of minimiz-
ing the expected flowtime for a finite number of available tasks. We point out
that this is equivalent to minimizing a suitably defined regret (expected loss
function).

In Section 3 we derive dynamic programming optimality equations for the
determination of optimal policies in several equivalent forms that are convenient
for our analysis. We also show that the optimal policy does not depend on the
number of the tasks from the known type that have to be processed, a property
that simplifies the optimality equations. The results of Section 3 make possible
the transformation of the optimality equations into those of a stopping prob-
lem (Berry and Fristedt [3], Bradt, Johnson, and Karlin [5]). )

In Sections 4 and 5 the case where the task lengths follow a distribution
from the one parameter exponential family is considered. We obtain character-
jzations concerning the structure and properties of optimal sequential allocation
policies in Section 4. In Section S we derive a simple explicit approximation to
the optimal policy in the case that the number of remaining jobs of the un-
known type is large.

For related work in this area see Gittins and Glazebrook [9], Lai and Rob-
bins [13], Lai [12], and Agrawal, Hedge, and Teneketzis [1] as well as references
given there. ‘

2. PROBLEM FORMULATION

A given number of jobs has to be scheduled on a single processor with the ob-
jective of minimizing the total expected flowtime. The jobs belong to two types,
E, and E,, with respect to their duration. With type E;, i = 1,2, there are as-
sociated

(1) an integer N; = 1, which denotes the number of type E; jobs,
(ii) a parameter 6; belonging to some parameter set ©, and

(iii) a sequence of random variables X,,Y,,,Y,,,..., such that Y, repre-
sents the duration (length) of the jth job of type E,, while X; is a ge-
neric random variable used to denote the length of a job from E,.
Given the value of 8, = 6, the random variables X,,Y,,,Y;;,... are
i.i.d., with a probability density function (p.d.f.) f(x|8) with respect
10 a nondegenerate measure ». Also, let u(8) denote the expected value
of a random variable X distributed according to f(x|8).
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Parameter 6, is known in advance, while 8, is unknown. Following the
Bayesian approach, we consider #, as a random variable with prior distribution
denoted by Hy(8), 6 € 6.

We define the optimization problem as follows. Let ¢ denote the number of
jobs of both types that have already been scheduled. In the sequel r will be re-
ferred to as time or stage of the problem. At 7 =0, X; ~ f(x|8;), i = 1,2 with
respect to »(dx), with &, known and 8; ~ H,(6).

A set of size k; of performed type E; jobs will be denoted by d;(k;) =
(Pise oY) K SN T= 12,k + k=1 Let k = (k, k), d(k) = (d,(K)),
dy(k3)).

Because 6, is known, the lengths of unfinished jobs from E,, X, Y, ¢,4+1,
Y\ ty42:- - -, given d,(k,), are i.i.d. random variables with p.d.f. f(x]6,), with
respect to »(dx).

Because #; ts unknown, the lengths of unfinished jobs from E;, X3, Y3 &,41,
Y3 k342s+ - - Biven (dy(k3) and 6, = @}, are i.i.d. random variables with p.d.f.
f(x|6), with respect to »(dx). Given d,(k;), 8, is a random variable with (pos-
terior) distribution H{8|d,(k;)), defined as follows:

F(da(kz) [6) dHo(8)  f(72x,|0) dH(8]d2(k; = 1))

dH(8)dy(ky)) = —— = '
flda (k) | Ho) L S(32.5,18) dH{8] d3 (k; — 1))

2.1

where d,(k)) = (d,(k, = 1), y.x,), H(8]d2(0)) = Hy(0), and f(d,(k,)|6),
F{dy(k;) | Hy) denote the joint p.d.f. of the sample dy(k,), given 8, = 6 and
Hy, respectively.

Given dy(k;), unconditional on the value of §;, the future observations
from Ey, X3, Y2 4341 Y2, k342, - - -, @r¢ 1i.d. random variables with distribution
determined by the marginal p.d.f. (with respect to v(dx))

f(x|da(ky)) = f(x|H) = Lj(x|0) dH (0| d,(k,)). (2.2)

Also, in this Bayes framework
i12(d2(k2)) = Enq\dyiean [80(02)) = Efejay0en [ X2) (2.3)

denotes the Bayes estimate of u(8;).

For notational convenience we use the same symbol f to denote the p.d.f.
of an outcome given a specific parameter value as well as the marginal p.d.f.
of an outcome from E; given the history of observations d;(k;). Although
they are different guantities, there is no danger of confusion.

Let 3C denote the set of prior distributions of #,. A sequential scheduling
policy is defined as a function =: {0,1,. .., N} x [0,1,..., Ny} x J— 1,2},
where x(n,, ny, H) is equal to 1 or 2, according to whether we schedule a job
from E, or E;, respectively, at a stage when n,(n,) jobs are unfinished from
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type E, (E;) and the current information about #; is summarized by the poste-
rior d.f. H(-).
To characterize the performance of a policy, we define the total flowtime
corresponding to a policy =
Ny4Ny o

F(Ntho ') = Z 2 Y(JO ﬂ’), (2-4)

=1 j=I

where Y(J, ) denotes the length of the job scheduled at stage j, under #. Then,
EgF(N),,Ny, ) = E[F(Nth. T) loz - 0]

Ni+Ny
- Z} (Ny+ No+ 1 = )u(8yx), (2.5)
-
where i (¢, x) is the type of the job scheduled at stage ¢, under =. In Eq. (2.5)
the flowtime is expressed as the expected accumulated number of unfinished
jobs over time. This expression follows by taking the expectations in Eq. (2.4)
and rearranging the terms.
Define the expected flowtime achieved by a policy = with respect to the
prior distribution of #,:

M(N,, Ny, Hp, w) = Ey, | EgF(Ny, N3, 7)) = Ej¢. | o) LF (N1, Ny, 7)) . (2.6)

We say that a policy =* is optimal for the problem of minimizing the expected
flowtime under incomplete information and initial prior fA;(#) on 6,, if and
only if

M(NthoHOo'.) =min M(NluNlnHOI ')- ’ (201)

where the minimum is taken over all sequential policies defined earlier.

We now turn to an alternative way to describe the problem, which will be
useful in the following development. First we observe that, if ; were known,
the optimal policy for minimizing the expected flowtime would be the Shortest
Expected Processing Time (SEPT) rule, according to which all the jobs of the
type with the least expected length would be scheduled first. Given 8, = 8, define
the priority and nonpriority indices a(8) and b(8) such that u(6,) = u*(0) =
minfu(8,), x(0)] and u(6,) = max{u(f,), u(0)), respectively. Using these def-
initions as well as Eq. (2.5), we can express the minimum expected flowtime un-
der complete information for #;, as a function of 8, for any value of ¢, = 8:

Nagey

F‘(O;Nl.Nz) = 2 (No“) +N0(0) +1- t)P(oa(O))

=1

Ny

+ 25 (Npy + 1 = hu(bpie)

tm]

_ N, (N, + 1)
2

No(N; + 1)

u(d,) + 2

#(8) + N\ Npu'(8). 2.8)
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When 8, is thought of as a random variable, the expected value of the preced-
ing expression with respect to the prior distribution Hy(8) provides a lower
bound for the achievable flowtime under uncertainty:

M(N, Ny, Hy, ) = Ey F*(8; N, N;), for all =, (2.9)

We finally define the regret due to uncertainty corresponding to a policy
x as

R(N,, Ny, Hy, ) = M(N,, Ny, Hy, 7) = Ey F*(0, N\, N;). (2.10)

Since the quantity £, F*(8; Ny, N;) in Eq. (2.10) is independent of =, minimi-
zation of M is equivalent to minimization of R. Thus, an optimal policy »* can
also be defined as

R(N\, Ny, Hy, 7*) = min R(N,,N;, Hy, x). 2.11)

Before we proceed to the next section, we will state a martingale-type prop-
erty of the information-updating mechanism that will be used in what follows.
The proof is immediate.

Let H{#) denote the distribution of #, given the current information and

H(8)x) the same distribution after one additional job from type E; has been
performed and its length has been observed Lo be equal to x.

Lemma 2.1: For any function g: © — R such that E;[|g(0;)]) < oo,
Ep 1 Eqiyx,8(62)) = Exlg(6:)). (2.12)

3. PRELIMINARY RESULTS

In this section we obtain dynamic programming optimality equations for the op-
timization problem defined in Section 2. The equations are given in terms of
minimization of the expected total flowtime as well as of the regret. The main
result in this section is Theorem 3.1, according to which the optimal policy does
not depend on the number of unfinished jobs of type E,. The assumption of
processing time distributions from the one-parameter exponential family is in-
troduced at the end of the section.

Let V, U denote the optimal value functions for the flowtime and the regret,
respectively:

Ving,n, H) = inf M(n,,n,, H,w), 3.1)
U(n,,ny, H) = inf R(ny,ny, H, 7). (3.2)

In the following two propositions the dynamic programming equations corre-
sponding to Egs. (3.1) and (3.2) are obtained. The proof of Proposition 3.1 is
omitted, because it is based on well-known results on Markovian decision pro-
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cesses with incomplete information (Bertsekas [4), Dynkin and Yushkevich (7]).
The proof of Proposition 3.2, given in the Appendix, is based on the fact that

Uny,ny H) = V(ny,ny, H) = E4F*(0; ny, n3), (3.3)
which is immediate from Eq. (2.10).

Proposition 3.1: The functions V(n, k, y) defined in Eq. (3.1) are the unique
solutions of Egs. (3.4)-(3.6):

V(ny,ny, H) =min|(n, + m)r(H;a = 1)+ V(n, = 1,n,, H),
(ny + m)r(Hia=2) + Eq iy V(ny, ny = 1, H(- | X)),
m=12,...,N,i=12 (3.4
ny(ny 4 1) |

V(n,,0,H) = 3 riH,a=1), n=01....N, 3.5)
V(O!nlvﬂ)=n2_(n3'2+_l)r(H;a=2)t nzsools-”’NZn (3-6)

where
"(H;a=‘)=Eo.[X|l=#(0|). 3.7
riH,a =2) =E/(.l"|X2 = E"[E‘Xﬂ = J;“(O)JH(O) (3.8)

Proposition 3.2: The functions U(n, k, y) defined in Eq. (3.2) are the unique
solutions of Eqs. (3.9) and (3.10):

U(ny,ny, H) = min{ne(Hya = 1) + U(n, = 1,0y, H),
mc(H;a =2) + EpmyUlny,ny — LA(-| X)),
m=12,....N,i=12, (39

U(n,0,H) =U0,ny,, H) =0, n=0,1...,N, (3.10)
where
c(Hia=1)= f (u(8,) — u(0)) dH (6) (3.11)
ul@)<u(dy)
and
c(Hia=2)= f (u(8) — ul8,)) dH(6) (3.12)
#(8)>uldy)

are the one-step regret or loss functions.
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Remark 3.3: Since the state and action spaces satisfy the conditions of Section
8.2 in Dynkin and Yushkevich [7), the infimum in Egs. (3.1) and (3.2) is attained
by an optimal policy »* and can be replaced by minimum.

In the following theorem we will establish a property of the optimal policy
that simplifies the study of the optimality equations and makes apparent the
usefulness of the regret approach to the problem.

THEOREM 3.4:
(a) The minimum regret function U(n,,ny, H) has the following property:
Ulny,ny, H) = n, UL, ny, H), Vn,,ny H. (3.13)
(b) The optimal policy =* satisfies
v (ny,ny, H) =%, ny, H), ¥n,, n,H. 3.149)
Proor: We prove (a) and (b) simultaneously by induction on n, and n;. Let
Ui(n,,ny, H) =nye(H;a = 1) + U(ny = 1,0y, H) (3.15)
and
Uslnyony, H) = nye(H,a =2) + Eq ) U(ny,ny = 1LA( | X3)).  (3.16)

For n, = 0,1 and all n,, as well as for n; = 0 and all n,, Eq. (3.13) is obvious.
Assume that it is true for some »n, and all #, as well as for n, + 1 and n, — |.
Then for n, + 1 and n; we have

U[('h -+ l,nz.H) =R2C(H;a k= !) + ﬂ]U(l,"z.H)

=U,(l,ny, H) + n,U(1, ny, H), 3.17)
and '
Upy(ny + Ly, H) = (ny + 1)e(H; ¢ = 2)
+(ny+ DE 1 1yU(),ny = 1, H(- | X3))
= (m + DU (1, ng, H). (3.18)
Thus,

Uilng + L,ny, H) = Us(ny + 1,0y, H)
=Ui(l,ny, H) — Uy (1, my H) + n (UL, my, H) = Uy (1,03, H)). (3.19)
Now we consider two cases.
Case 1: U\(l,ny, H) s Uy{),ny, H). Then U(l, n;, H) = U,(1, n;, H) and
Ui(ny + 1,ny, H) = Us(n, + 1,n,, H)
=(n;+ YU, (L,n, H) = Uy(1,n;, H)) =0, (3.20)
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thus
Ulny + 1,ny, H) = Uy(n, + 1,np, H)
=(n + DU, (1, n, H)=(n, + DU, ny3, H) (3.21)
and also
'y + Ly, H) =1 = x*(1, ny, H). (3.22)
Case 2: U\(1,n3,H) > Uy(1, ny, H). Then U(l, ny, H) = Uy(1, ny, H) and
Udny+ L,ny  H) = Us(ny + |, ny, H) = Uy(1,my, H) — Uy(1,ny, H) > 0,

(3.23)
thus

Uln, + 1,03, H) = Uy(n, + 1,ny, H)
=(m+ DU (L m, H)=(nm+ 1)U(l,n;, H) (3.24)

and
‘l'.(n] + 1,”1,”) =2= 1'(l,n;,H). (3.25)
Since the required properties are true for both cases, the induction step is
complete. _ n
Remark 3.5:

(a) Theorem 3.4 implies the following. [f at some state (ny,n,, H),
x*(n,, ny, /) = 1, then, because the next state will be (n, = 1, ny, /)
and =* is independent of n,, »*(k,n,, H) =1, fork=n,—1,...,L

(b) Theorem 3.4 and the preceding observation lead to the next simplifica-
tion of the dynamic programming equations for U:

U(n,H) = min|nc{H;a=1),c(H;a =2)
+ Ep . myU(n = 1,H(- X)),
n=12...,N, (3.26)
U(0,H) =0, (3.27)

where U(n, #{) corresponds to U(1,n, f1).

(c) With Eq. (3.26) the original problem has been reduced to a problem of
optimal stopping, where the stopping cost at state (n, /) is the first
term of the right-hand side.

The problem of optimal stopping is well known in the literature (Bradt
et al. [5], Berry and Fristedt [3), Kumar and Varayia {11]). In the remainder of
this article we study the solution of Eqs. (3.26) and (3.27) under the additional
~assumption that the underlying distribution of the job lengths belongs to a one-
parameter exponential family. More precisely we adopt the following.
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Assumption 3.6:

(a) The p.d.f. f(x|8) belongs to an exponential family with a single nat-
ural parameter 8; i.e.,

f(xlo) - elx-&(l)ﬂ(:)_ (3.28)

(b) The parameter set is an interval of the form © = (8, §), with endpoints
that can be infinite, and satisfies the following conditions:

E,lX,l-:f “|x|f(x|0)v(dx)<m. vieB,i=12 (3.29)

+

L= infy"(8)>0, L= sbg V(6) < oo, (3.30)
13 fe

Remark 3.7:

(a) The exponential family assumption of Eq. (3.28) is quite general, be-
cause several interesting distributions have this form, among them the
normal with known variance and parametric mean, Poisson, negative
exponentizl, Bernoulli, etc.

(b) Since the term e** in Eq. (3.28) is independent of §, it can be included
in the measure ».

{c) In a one-parameter exponential family of the type described in Eq. (3.28)
the distributions are ordered both in mean and in likelihood ratio (cf.
Cox and Hinkiey (6]). More specifically u(€) = ¢’(8), and var(X|8) =
v (#). Thus, u(#) is strictly increasing in § € O, and the set [ u(8):
8 € ©) is an interval of the form (u(8), x(6)). The likelihood ratio
ordering refers to the fact that for any 6,,8, € O, such that 6, < 8,,
the likelihood ratio f(x|8,)/f(x|8;) is decreasing in x. We will use
both of these ordering properties in the rest of the paper.

(d) The results of Section 5 require that 8, is an interior point of the pa-
rameter set ©. This does not affect the generality of the model described
thus far. Indeed, if 6, = @ (8, = §) then the problem is trivial, because
then one should always choose E, (E;). Thus, from now on we shall
assume that § < 8, < 4.

The one-parameter exponential family assumption has the following impor-
tant implication. The posterior distribution /(8| d;(k;)) and the marginal den-
sity f(x|d;(k,)) defined in Eq. (2.1) and Eq. (2.2), respectively, are uniquely
determined by (X3, 7 &,), Where

l &
Yk = P IS, (3.31)
j=0

is the sample mean; i.c., the pair (&, §;) is a sufficient statistic for the un-
known parameter, for this family of distributions (cf. Cox and Hinkley [6)).
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Thus, we can assume that in Eqs. (2.1)-(2.3) d,(k;) is simply the two-
dimensional vector

dy(ky) = (K3, Vo). (3.32)

Note that given dy(k ~ 1) = (k — 1, y) and Y ; = y3 &, d3(k) is defined by the
following updating scheme:

dy(k|ds(k = 1), 32 4) = (k,m(k = 1,3, y2.4)), (3.33)
where
. ky + x
m(klyOx) - k+ l » (3-3‘)

and thus optimality Eqgs. (3.26) and (3.27) can be simplified as follows, where
the current information is represented by the sufficient statistic (&, »), as already
defined:

U(n, k,y) = min[nc(k, y;a = 1),c(k, y;a = 2)
+ E;mUln = Lk+ L,m(k, y, X)),
n=12,...Nk=12,...,.N (3.35
U0,k,y) =0. (3.36)

Definition 3.8 allows us to use a change of measure transformation to ob-
tain a further simplification of the optimality equations.

DEerFINITION 3.8: Let

(0,0 =1 !(_yl_ﬂl 3
Ak, y) = f e*!0.9:02) gF. (8) (3.38)
'
d(f) =6-9,, (3.39)
5(8) = u(8) — u(6,), (3.40)
w(f) =¥ (8) — ¢(6)). (3.41)

Remark 3.9:

(a) From the sufficiency of (k, y) it follows that the quantity e*/(%-#11»
is equal to the likelihood ratio of a sample d, with size ¥ and sample
average y:

F(dy:0)
0.6 |y) - L2740 77
¢ Tdni0))" 0.42)
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Therefore, relation Eq. (2.1) for the posterior distribution of 8, given
the sample d; = (&, y) becomes

et Or=2@N gr () XA gH (6)

dH (8| (k,y)) = (3.43)
f e O g () Alk, y)
)
(b) From Eq. (3.28)
1{6,8,|y) =d(8)y — w(8), (3.44)

and thus
ki{0,8,]y) + 1(6,8,|x) = (k + 1)/(8,6,|m(k,y,x)). (3.45)

The main idea in the next proposition is to transform the optimal regret
function Uto u = UA, with A as defined in Eq. (3.38). Then u satisfies a set of
optimality equations cquivalent to Eqgs. (3.35) and (3.36), but they are easier to
study. The one-step costs for the transformed system have a simpler form and
also the expectation of the future cost is taken with respect to f(- |6,) instead
of the marginal f( - | /). Because we are more interested in the optimal policy
than in the value of the regret function, this transformation is beneficial. The
proof of the proposition is given in the Appendix together with a necessary aux-
iliary lemma.

Proposition 3.10: Optimality Eqs. (3.35) and (3.36) arc equivalent to the fol-
lowing:

u(n, k,y) = min[né(k, y,a =1),é(k, y,a = 2)
+ E/"”‘)u(n - l-k+ l’m(k’y-XZ»!:
n=12...Nk=01,.... N-n yeR, (3.46)

u(0,k,y) =0, (3.47)
where
u(n,k,y) = U(nk,y)A(k, y), (3.48)
ék,y;a=1)= -f 5(8)e* 041 dH(8), (3.49)
f<h,
ék,y;a=2) = 5(8)e* -0 dH . (8). (3.50)
820,

We conclude this section with an auxiliary lemma, which is proved in the
Appendix. Let

glk,y) =&k, yia=2)~ck,y;a=1) =f 5(0)et" O8N g (). (3.51)
o
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LEMMa 3.11: The quantities ¢(k, y; ), q(k, y) satisfly

(@) é(k,y;a) >0, ¥k, y, = 1,2, : (3.52)

(b) vk, &(k,y;a = 1) is decreasing in y.
vk, C(k, y,a = 2) is increasing in y.
vk, q(k,y) is increasing in y.
(©) Ep lE(k + 1, m(k, y, X);a)] = E(k, y; ). (3.53)
Remark 3.12: Equation (3.53) is an intuitive martingale property of the infor-
mation update mechanism. It can be regarded as the transformation, accord-

ing to the change of measure introduced in Proposition 3.10, of the following
equation about the one-step regret functions:

Epmlc(A(- | X);a)] = c(H;a). (3.54)

Equation (3.54) expresses the fact that, before an additional sample from E, is
observed, the expected value of the one-step cost after the observation is equal
to the current value. This is a well-known property of Bayes sequential estima-
tion methods.

4. FINITE HORIZON

In this section we shall prove two results that give the structure of the optimal
policy for the problem stated in Sections 2 and 3. Theorem 4.1 describes the
optimal policy with respect to stopping and continuation intervals for y =
Ef,, ¥a2.5» whereas Corollary 4.2 gives a more intuitive characterization in
terms of factors subtracted from the Bayes estimate of u(8,;).

THEOREM 4.):
(a) For each n, k there exists a number y,(k) with the property

I, ify>y.(k)
*'(n, k,y) = ‘ (4.1),
2, ify=y.lk)

where x*(n, k, y) is the action indicated by the optimal policy in state
(n, k,»).
(b) The sequence y,(k) is nondecreasing in n.

PROOF:
(a) Define
u(n, k,y) = minfnéik, y;a = 1), ek, y;a =2)
+ Epppgu(n— Lk+ 1, mk,» X,))), @.2)
unk,y) =nélk,y,aa=1), (4.3)
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u(nm k,y) =ék,y;a = 2)

+ Ep spuln =1,k + 1,m(k, y, X3)), (4.49)

A(n, k,y) = uy(n, k, y) = u,(n,k, y). @.5)
Then

u{n, k,y) = u(nk,y) + min{0,A(n k, )}, 4.6)

and from Lemma 3.11(c), A can be seen to satisfy the following re-
cursion:

A(n+ ),k y) =8k, y;a =2) + Ep. gy [u(n, k + 1, m(k, y, X3))]
—(n+ )&k, y,a=1)
=q(k,y) + Ep o (u(nk + 1, mk, y, X3))
—né(k + 1,m(k, y, X3),a = 1))
=q(k,») + Es.1p,) [min{0, A(n, k + |, m(k, y, X)),
(4.7)

where g(k, y) is the difference of the transformed one-step regrets de-
fined in Eq. (3.51). We shall prove simultaneously by induction on n
the following:

(i) Equation (4.1),,

(1) A(n,k, y) is increasing in y. (4.8),
For n = 1, Eq. (4.8), is immediate from Lemma 3.1](b), because
A(0,k, y) =0and A(1, &, ¥) = g(k, »). Let

nik) =infly:a(l, k, y) =0}, 4.9)

where we define inf @= +oo.

For y < y,(k) A(1, k, y) is negative, whereas for y = y, (k) it is
nonnegative. This completes the proof of Eq. (4.1),.

Suppose that Egs. (4.1), and (4.8), hold. Then A(n,k + 1,
m(k, y,x)) < 0when m(k,y,x) < y,(k+ 1), which from Eq. (3.32) is
equivalent to ‘

x<xk,y)y=(k+ Dy(k+1)— k. (4.10)

Hence, Eq. (4.7) can be written as
A(n+ 1,k y) =q(k,y)+f A(n, k + 1,m(k, y,x))
x<x (k. )

x f(x|8)v(dx). (4.11)
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To prove statement (4.8),.,, we have from Eq. (4.8), that
A(n, k + 1, m(k, y, x)) is increasing in m, while m (k, y, x) is increasing
in y, and so A(n, k + 1, m(k, y, x)) is increasing in y. Also, A{n, k + 1,
m(k, y,x)) <0 for x < x,(k, y). Furthermore, x,(k, y) is decreasing
in y, so when y increases the range of integration decreases. Thus,
Eq. (4.8),,, follows from the preceding observations. Equation
(4.1),4, can be established using Eq. (4.8),,, and defining y,., (k) in
the same way as that in Eq. (4.9). This completes the proof of Theo-
rem 4. 1(a).

(b) We will prove the following with simultaneous induction on n:
yn(k) = yn—l(k)- vk, n (4-12)n
min(0,A(n, &, y)} < min(0,A(n - 1,k, )}, Vvk,n,y (@4.13),

For n = 1 both Eq. (4.12), and Eq. (4.13), arc immediate, because
A(0,k, y) =0and y;(k) = —co. Assume they are true for n. Then, for
n + | we get from Eq. (4.7) and the induction hypothesis

A(n+ Lk, y)—A(n,k,p)
= Ez .10, [min[0,A(n, k + 1, m(k, y, x)))
- min(0,A(n—=Lk+ 1, m(k,yx)))] <0.
Thus, for y = y,(k)
A(n+ 1k, y,(k)) = A(n,k,y.(k)) =0, (4.14)
and becausc A is increasing in y,

Yasr (k) = ya(K),

which proves Eq. (4.12),,,. Equation (4.13),,, also follows easily
from Eq. (4.12),,, and Eq. (4.14). n

COROLLARY 4.2:
(a) For each n,k, y the optimal action =*(n, k, y) has the form

L i B i [1(02)) = e(m, Kk, ) > u(8))
t’(n.k.}')={ e UL @as)

2, if Exq.yie, o p(02)] — e(n, k, y) < pu(8))
where Ey. e,y [1(0,)) is the Bayes estimate of p(6,) given (k, y) and

gk, ya(k))

4.1
Ak, y) “16

e(nk,y) =

(b) The quantities e(n, k, y) are nonnegative and nondecreasing in n for
all (k,y).
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PRrROOF:

(a) From Theorem 4.1(b) y,(k) = y,(k). We also have from Theorem 4.1
and Lemma 4.2 that if x*(n, &, ) =1, then y > y,(k), and 50 g(%, y) >
q(k, ya(k)). By Eq. (3.51)

qlk,y) = f 8(8)e* 4l dH,(8)
L]

= (Ept.qn,yn [8(82)) — w(8,DA(K, y). (4.17)
Thus, .
Y > yalk) e gk, y) > qk, y, (k)
gk, ya(k))

& Eppeox,on (1(62)] — > u(d,), (4.18)

Ak, y)
and this completes the proof of Corollary 4.2(a).

(b) Because y,(k) = y,(k), it is true that g(k, y,(k)) = 0, and so
e(n, k, y) = 0. From Eq. (4.13) we see that the dependence of e(n, k, )
on nis due to g(k, y,(k)). By Lemma 3.1, g(k, y.(k)) is increasing in

y.(k). Finaily, because y,(k) is nondecreasing in n, we have that
e(n, k, y) is nondecreasing in n. ]

Remark 4.3:

(2) The “cutting point” y, (k) is related to the uncertainty due to the igno-
rance of parameter &, and represents in some way the amount of im-
mediate payoff that we can afford to sacrifice to get information about
#,, which is valuable for our future decisions. Because of that, it is in-
tuitively expected that y,(k) has the stated property, since further
sampling from £; reduces the uncertainty.

(b) One interpretation of the quantities e(n, k, ¥) is that they represent a
correction, which we subtract from the current Bayes estimate of the
job length from E;, fi; = Egq. ik, »p 1 1(82)], 10 take account of the un-
certainty associated with it. So the properties of ¢(n, k, y) stated in Cor-
ollary 4.2(b) are intuitively expected. A related result in terms of indices
is given in Theorem 5.3.1 of Berry and Fristedt [3] for the case of gen-
eral underlying distributions.

5. ASYMPTOTIC APPROXIMATIONS

In this section we obtain properties of the optimal policy that are related to its
behavior when the number of jobs of the unknown type is large (i.e., when
n— o). Before we proceed to the statement of the results, we shall make an-
other assumption. Namely, we assume that the prior distribution of 8, is con-
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tinuous in [§,6); i.e., there is a prior p.d.f. denoted by hy(#). This assumption
simplifies the following discussion without loss of generality, because the gen-
eral case can be treated in an analogous way.

The main results of this section are given in Theorems 5.11 and 5.12, which
provide us with upper and lower approximations to the optimal stopping re-
gions. The proofs of these two theorems are based on a number of intermedi-
ate properties, which are stated later and are proved in the Appendix.

, For a family of distributions f{x|@), let I(, 7) denote the Kullback-Leibler
information number

f(XIG)]
f(X|7) 1

LeMMa 5.1: For the one-parameter exponential family e®*~*'® 1(-.,-) has the
Jollowing properties:

I(o,7) = E,|log (5.1)

Wo,7) = (0 — 7)p(o) — (Y(o) — ¥(7)), (5.2)
I(o,7) = f " (r — 0)9"(6) db, 5.3)
(0 —7)? (0 ~7)?

6 (5.4)

2 2

Lemma 5.2 indicates a useful relationship between the log-likelihood ratio
i(6,6,|x) and the Kullback-Leibler information number.

=lo, 7)==

LEMMA 5.2:

(a) 1(8,8,]x) is concave in 8.
(b) vx€ R:38" = 0°(x), such that

1(6°,6,]|x) = max {6,0,|x), (5.5
where
pUx), ifp(x)E®
6%(x) =4 @, fu'(x)€O and 1(6,6,|x)>i(0,0,|x)
8, Fu'(x)£0 and 1(6,6,|x) =< 1(0,6,]x)
(5.6)

Moreover, if p~'(x) € O, then
1(8°,0,|x) = 1(8°,0,). 5.7)
() If x> u(8), then 1(6,6,|x) > 0.
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LEmMA 5.3: Let
v(k,y) =minlé(k, y;a = 1),E(k, y;a = 2)). (5.8)
There exists A > 0 such that y(k,y) < A/k, vk=12,...,yE€ER,

Lemua 5.4: Consider the following inequality:

Mx%e ™M < %, (5.9
Jor x> 0, and constants o, M\, n > 0. Let x(n) denote the solution of the equa-

tion resulting when the inequality sign in Eq. (5.9) is replaced by equality. Then

(@ 0)x(n)>0,vn=1,
(ii) lim,. x(n) = o0, and
(ii1) inequality (5.9) holds for x > x(n}).

(b) There exists a function e¢(n) such that A\x(n) = logn — ¢(n) and
e(n) ~ alog(logn) asn— co.

The next lemma concerning the asymptotic expansion of integrals accord-

ing to the Laplace method (cf. Erdélyi [8, p. 37]) will be used to obtain asymp-
totic expressions for the one-step regrets.

LEMMA 5.5: Let g,(8) and g,(6) be real functions on the interval («, ). Let
€, 1 > 0 such that g,(8) is continuous at 8 = «, continuously differentiable for
a<flsa+n gB)<0fora<hsa+n, andg,(f) =g (a) ¢ fora+
n < 6 = B. Suppose that there exist numbers b, d, v,\, such that v,\ > 0 and
23(0) ~ b8 — )", £,(0) ~d(6 — )", a5 0~ . Then

8 d A y e
f 8|(0)e*"“’ ag ~ '; I‘(;) (EE) e*"“’. as kK — oo, (5.10)

LEMMA 5.6: If ho(0) > 0, ¥v0 € O, and y > u(0,), then the following asymp-
totic relations hold.

1. Fora= 1,
ho(6,)9"(6,)
fhyia=1)- (k=) 5.11
kyia=b~- 0 e  *=) SR
2. Fora=2,
(@) If u(8,) < y < u(8), then
- 2%
F(k, y,a=2) ~ 8(6°( ) ho(6° KO, 80) .
E(k,y,a=2) ~ 8(6°(¥)ho(8*(y))e P

(k= ®). (5.12)
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(b) If y = pu(0), then
T
(k'
(k=o). (5.13)

E(k, y;a = 2) ~ 8(B) ho(B)e*®011»

(©) If y > u(6), then
_ 6(6)"0(6) ek’(‘.‘l |»)
y-u® Kk

LEMMA 5.7: If ho(0) > 0, v € O, and y < u(0,), then the following asymp-
totic relations hold.

E(k,y;a=2)

(k= o). (5.14)

1. Fora= 1,
(@) If y < p(8), then
_ B(8)ho(8) e!t&ln

&k, y,a=1 , k= o). 5.15
(k,yia=1) Y — p(8) T (k= ) (5.15)
(b) If y = u(8), then
F(k, yia = 1) ~ —8(8)ho(0)ek&0i1» R
ck,y;a=1) () ho(0)e Ok
(k= o). (5.16)
(©) If p(8) <y < ut8,), then
. 2
&k, yia=1) ~ —8(8°(¥)ho(8° aeten ST
(k,y,a=1) (B° (N ho(8°(y))e OOk
(k= ), (5.17)
(d) If y = u(8,), then
Sk, yia=1) ~ %‘-’ (k- ).  (5.18)
2. Fora =2,
(@) If y < u(8,), then
ho(8,)¥"(8,) :
clk,yia=2)~ , k— ), .
(K, y;a=2) TENTA ( o) (5.19)
(b) If y = u(8,), then
élk,y,a=2) ~ M. (k= o0), (5.20)

k
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Remark 5.8: In Lemmata 5.6 and 5.7 we made the assumption that the prior
p.d.f. h is positive in the whole parameter space © = (8, §]. This ensures that
the values for which the log-likelihood ratio attains its maximum value in the
integration region are independent from A,(8). When this assumption is
dropped, the same linc of argument remains valid. However, the expansion of
the integrals becomes more tedious, because one must consider separately cases
such as hy(8) =0,for8 <8, +¢,0 20, —¢,or8, —e <0 <8, + ¢. According
to each individual case examined, one must integrate in a neighborhood of a
value 8, which is closest to the maximizing value and has positive prior p.d.f.
The corresponding asymptotic expressions cannot be given in advance for the
general case, but they can be derived following the same procedure as in the
proof of the Lemma 5.6, for every possible prior p.d.f.

The next auxiliary result is immediate from Lemma 5.6. We state it sepa-
rately because the expressions involved are used in the proof of Theorem 5.12.

LEMMA 5.9: If ho(6) > 0, v6 € O, and u(8,) < y < u(8), then the following
asymptotic relations hold, as k — o:

E(k,y;a=1) 250 (0,)VV"(6%( 1))

- Y R
Fkyia=2) (7= pGOPS@E (6 (ke e B2
and
~ . . 2 2 ”
(clk,yia=1)) 4h3(0,)W"(6°( »)) "

Ekyia=2) (¥ —p(B) 66 (3Nho(0 YNk 2HE D8
The next proposition is used in the proof of Theorem 5.11.

Proposition 5.10: For each state (n, &, y) with sufficiently large n there exists
a scheduling rule r° = 7%a, , y), which processes at least one job from type
E, and its total regret W(7°) (transformed according to Proposition 3.10), sat-
isfies

W(r%) < ¢*(n, k, ), (5.23)

where

' (n, k,y) =23A(n + k)élk, y,a = 2) (5.24)
and A is the constant defined in Lemma 5.3.

Proor: For each (n, k, y) define a class of scheduling rules »(¢) = r(i; n, k, y)
as follows. Perform a fixed number i(=<n) of type E, jobs, and then the re-
maining n — i before or after those from E,, according to whether

E(k+i,m(k.y, Y2k410-- 2 Va s =1)
2E(k—‘-iim(k’ylyz,k+|l‘"lyz.k+i;a=2) (5.25)
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or
6(k + itm(koyvyZ.k-o-l" .. ly).k+i;a = l)
<c(k+iam(koyﬁylkﬁlw-~oy2.tol;a=2)| (5-26)

respectively, where m(K, Y, ¥2 k415 - -+ Y2, k4i) denotes the new average after
the i additional outcomes

ky Yaker ¥ 2o+ V2 psi
m(k,y, . = + = - Sund
(K, Y, V2, k41 Y2, k41) Py Py

(5.27)

Because of the martingale property Eq. (3.52) of é(k, y; @ = 2), the total regret
corresponding to rule r, according to the cost structure and dynamics of Prop-
osition 3.10, can be written as follows

W'“)(nv k.}’) = iE(koy;a = 2) + (" - i)EI(.“')

X [y(k +L,m(k Y, Y2 kers s Yo 00i))]. (5.28)
Applying Lemma 5.3 we get
W' n k,y) <é(iznk,y), i=0,,...,n, (5.29)
where
A

dlisn,k,y) =ic(k,y,a=2)+ (n—1i) (5.30)

k+i

If we consider the extension of the function ¢(i) in Eq. (5.30) in the real
domain, .

eliyn k,y) =ik, y;a=2)+ (n—1i) ﬁ}, O<i=ni€R, (531

and differentiate with respect to {

i L k+n
(i) =24 ———-,-k tn So, (5.33)
(k+1)
we see that ¢(7) is convex. We also have
¥ = ek yia=2)~ 45", (5.34)
which is negative for n sufficiently large, and
(n) = &k, yiae = 2) = ——, (5.35)

kK+n
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which is positive also for n sufficiently large. This means that, for fixed n, k, y,
¢ attains its minimum for i = i*, 1 < i" < n, such that ¢’(i*) = 0; i.e.,

i.=Jé(k,y?a=2) (k+n) -k (5.36)
Let [i*] =min{i € N:i=i*}]. Then [i*] <i* + |, and, because ¢ is convex,
S([i*]) < oli* +1). 5.3
But
p(i*+ 1) ="+ 1)k, y;a=2)+(n—=i"—1) -——AF—
k+i"+1
= (i*+ Dék,y;a=2)+ (n—1i") Py
=2JA(n+ k)e(k,y;a=2) — (k— 1)élk,y;a=2)~ A
< 2VA(n + k)E(k, y;a=2) = ¢*(n, k, ). (5.38)
Combining the preceding inequalities we have
W N (n, k, y) < ¢°(n, k, p). (5.39)
Taking r%n, k, y) = r([i*(n, k, ¥)]) completes the proof. [ ]
We can now state the two main results of this section. Let
S.=k,y):v%(n,k,y)=1). (5.40)
Tueorem S.11: Under the exponential family assumption, when n — o
S» C §,C Sy, (5.41)
where
Sa =k, y):nl(k, y;a=1) < E(k, y,a=2)}, (5.42)
S, = [k, y):né(k,y;a = 1) < 2VA(n + k)é(k, y; e = 2)). (5.43)

Proor: From Eq. (3.46) and Lemma 3.11(a) it follows that u(n, k, y) > 0. So
it is easy to see that if né(k, y;a = 1) < &(k, y;a = 2), then it is optimal to
switch to type E,, i.e., #°(n, k, y) = 1. This proves the left inclusion relation-
ship in Eq. (5.4)).

To prove the right relationship, we get from Proposition 5.10 that, if
né(k,y,a = 1) = ¢°, it is by no way optimal to switch to E,, since applying
rule 7%n, k, y) is a better policy. So né(k, y;a = 1) = ¢* implies that
x*(n, k,y) =2, or equivalently x*(n, k, y) = 1 implies that né(k, y;a =1) <
¢", and the proof is complete. "
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Note that the arguments used in the proof of Theorem 5.11 are related to
those used in the proof of Theorem 5.1 of Whittle 14, p. 252].

Based on Theorem 5.11 we now derive an asymptotic approximation of the
optimal policy *(n, k, y) as n — oo, Let

10%(y),6,), if u(@ #
G, ={( (.60, if u(®) <y <@

(5.44)
16,6,|y), ifyz=u@

THEOREM 5.12: If ho(8) > 0, VO € ©, then there exist functions €,(n,y),
e2(n, ¥), e(n,y), such that when n - =

, (5.45)

I, ify>ulb) and kG(y,0,) >logn—e(n,y)
w*(n,k, y) =
2, Otherwise

and

«(my) = iloglogn — o(loglogn), if u(8,) <y < u(f)
e loglogn — o(loglogn), ify= u(h)

( jloglogn — o(loglogn), if pu(8;) <y < u(f)
€N, =

2m Y 2loglogn — o(loglogn), ify= u(f)
€(n,y) <e(ny) <elnmy).

Remark 5.13: An interpretation of Eq. (5.45) is due at this point, in relation to
the results of Corollary 4.2. As discussed in Remark 4.3(b) the optimal policy
for a finite horizon suggests that a nonnegative quantity should be subtracted
from the Bayes estimate of u(8;) and the result be compared to u(8,). This
correction has the effect of allowing jobs from E; to be further tried, even if
their current estimate is unfavorable, so that more information about their dis-
tribution is acquired. The same is accomplished with the policy described in
Eq. (5.45). Indeed, even if the observed average job length of E; is greater than

u(8,), to switch to E, the additional condition kG(y,8,) > logn — e(n, y)
must be satisfied. Therefore, in this case, too, jobs from £; are given priority

over those from E,, for the purpose of learning.

PrOOF OF THEOREM 5.12: We will show that, for large n, there exist sets S, and
functions ¢,(n, ¥) and ¢;(n, y), such that
(i) S, = [k, ) : y> p(8,) and kG(y,8,) > logn — €, (n, y)|,
(i) S, c 8. 8,, and S, = {(k,y):y > u(6,) and kG(y,6,) > logn —
e&(n, y)].
Then the assertion will follow in view of Theorem 5.11.
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First consider S,, which is deécribed by the following relation:
clk,y,a=1) < 1
clk,y;a=2) n

The proof of Theorem 5.12(i) will follow four steps.

Step I: For any fixed y, for Eq. (5.46) to hold when n — o, it is necessary that
k — o. To see this, note that Eq. (5.46) holds when at least one of the follow-
ing conditions is satisfied:

Elhk,y;a=1)=0 or é(ky,a=2)— oo,
because both quantitics are positive. Any one of the preceding implies that

k= oo,

Step 2: For Eq. (5.46) to hold when n — oo, it is also necessary that y > u(8,),
because from Lemmata 5.6 and 5.7 we see that, when k — oo, the values of y
for which the preceding ratio tends to ¢ are those included in the range y >
u(6;).

Step 3: For Eq. (5.46) to hold when n ~ o, it is necessary and sufficient that

(5.46)

y>u(8)) and k> logn = ¢ (n,y),

i
G()‘- 0| )
where ¢;{n, ¥) = o(log n), ¥y. To prove this claim, we take y > u(6,), which
is necessary from the previous step, and consider three cases corresponding to
Lemmata 5.6.2(a)-5.6.2(c).

In Lemma 5.6.2(a), for which u(6,) < y < u(#), the left-hand side of
Eq. (5.46) is asymptotically approximated by Eq. (5.21). From Eq. (5.21) we
have that, for any fixed value of y, Eq. (5.46) is an inequality of the form
"Eq. (5.9) with x = k, « = 3§, and A = I(8°(y),0,). Hence, there exists a func-
tion ¢, (n, y) such that, when n — o, Eq. (5.46) is satisfied for

kI(0°(y),8,) > logn — € {n, y), (5.47)

and €,(n, y) = } log(log n) — o(log logn) = o(log n), vy € (u(8,), u(8)).
For both Lemma 5.6.2(b) and Lemma 5.6.2(c) we can show in the same
way that the asymptotic solution of Eq. (5.46) is

kl(6,6,|y) > logn —&;(n, »), (5.48)
where €, (n, y) = log(log n) — o(log log n) = o(log n), ¥y = u(f).

Step 4: The proof of Theorem 5.12(i) follows by combining the three cases con-

sidered in Step 3. i
We now turn to the inequality which defines the set S, in Eq. (5.43) and
which can be rewritten as

Gk, y;a=1)? 4A(n+ k)

4
Fk,y,a=2) n? (5.49)
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Consider also the same relation with equality:

(Ek,y;a=1)*  4A(n+ k)
éky;a=2) n* (5-50)

The proof of the second claim will follow six steps.

Step 1: For any fixed y, for Eq. (5.49) to hold when n — oo, it is necessary that
k — oo, for the same reason as in Step 1 of the proof of the first claim.

Step 2: When n — o, for Eq. (5.49) to hold, it is necessary that y = u(6,). In-
deed, from Lemma 5.7 we see that, when y < u(8,) and k — o, the left-hand
side of Eq. (5.49) goes to o with exponential rate in k (Egs. (5.15)-(5.17) and
(5.19)) and, thus, cannot be less than the linear function of & in the right-hand
side.

Step 3: Although Step 2 implies that there may be points (k, y) € S, such that
y = u(8,), these points need not be considered for the approximation of the
stopping set S,. Indeed, let S =S, = [(k, ¥) € S,, ¥ = u(8,)}. It is proved next
that S, C S..

When y = u(8;) and k - o0, it is not uniquely optimal to switch to E,.
This property holds because from Lemma 5.7 we see that in this case &(k, y;
a = 1) and €(k, y; a = 2) are asymptotically equal. Thus, performing all jobs
from E, first has the same total expected regret as switching to E,, therefore
continuing for one more step and then optimally will be at least as good.

Step 4: When n = o, k- oo, and y > u(8,), Eq. (5.50), considered as an
equation in k, has a unique solution k(n, y) and Eq. (5.49) holds for & >
k(n,y). Indeed, in this case the left-hand side takes the asymptotic form in
Eq. (5.22), which is decreasing in X, while the right-hand side increases from
010 oo,

Step 5: For y > ul(#,),
k(n,y)G(y8,) =logn — e(n,y), (5.51)

where ¢,(n, y) is of the form stated in the assertion of Theorem 5.12. To prove
Eq. (5.51), we will show that ko(n, y) = 1/G(»,0,)(log n — ;(n, y)) satisfies
Eqg. (5.47). Then Eq. (5.51) will follow from the uniqueness of the solution dis-
cussed in Step 4.

First note that (kq(n, y))/n = 0, as n - o; thus, the right-hand side of
Eq. (5.50) is of the same order as 1/n.

Also, because kq(n, y) — o as n -+ oo, the left-hand side of Eq. (5.50) is as-
ymptotically approximated by expressions corresponding to cases 2(a)-2(c) of
Lemma 5.6.

In case 2(a) the left-hand side of Eq. (5.47) takes the form described in
Eq. (5.22). Since in this case

1
ko(n,y) = 6060 (log n — e2(n, y)),
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with €,(n,y) = Jloglogn — o(loglogn), vy &€ (u(8,), 2(8)), we get that
ko(n, y) as already defined satisfies Eq. (5.47).
In cases 2(b) and 2(c) the corresponding expressions

ko(n,y) = (log n = e3(n, »)), (5.52)

1
,(59 ol 'y)
with e,(n, y) = 2log log n — o(log log n1}, ¥y = u(d), can be shown to satisfy
Eq. (5.50) with similar reasoning. Thus, Eq. (5.51) follows.

Step 6: The proof of the second claim and the whole theorem is completed by
combining the cases of Step 5. -

Remark 5.14:

(a) From Theorem 5.12 we can sce that, for n large enough, it is never op-
timal to stop performing jobs from E; when y < u(8,), even if the cur-
rent information on 6, indicates that Eg(u(8;)] > u(8,).

(b) The asymptotic policy derived in Theorem 5.12 is independent of the
initial prior p.d.f. hy, when hy(8) > 0, v8 € ©. If the last condition
fails to hold, we can still show that the general form of the asymptot-
ically optimal policy is

1, ify>u(¢) and ki(7,6,|y) > logn—e(n,y)
w(nk,y) = )
2, otherwise

(5.53)

where
£ =supl@ <@, hy(0) > 0) (5.54)

and 7 is the value of 8, which maximizes /(0,6, | y) in the support of
the prior p.d.f. This can be shown by following the same line of rea-
soning as that for the proof of Theorem 5.12, the difference being that
the asymptotic expressions of Lemmata 5.6 and 5.7 need to be modi-
fied (sce also Remark 5.8).

{c) Consider the following policy:

I, ify>u(6,) and kG(y0,) >logn
'o(nn k.)’) = : . (S.SS)

2, otherwise

=% is an approximation to policy w,, because it increases the stopping
threshold for kG ( y, 8,) by an amount equal to ¢(n, y), which is of or-
der o(log n). The ratio of the approximation error ¢(n, y) to the cor-
rect value of the threshold, log n — (n, y) tends to zero for large n.

We conclude this section showing some properties of the function G( y,6,)
and a resulting graphical representation of the optimal policy approximation #°.
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Proposition 5.15:

(a) G(y,8,) is continuous, continuously differentiable, and increasing in
Y voh y> “(01)°

(b) G(y,8,) is decreasing in 6,, vy, u(8,) < y. If y < u(f), then
G(y,8%(y)) = 0. If y = u(8), then G(y,8) =0.

Figure 1 describes policy #° in terms of y, for some fixed value of 8,.
From Proposition 5.15(a) and Figure 1 we see that switching to E, is required
when y > y%n, k), where y°(n, k) is an asymptotic approximation to the cut-
ting points y,(k) defined in Theorem 4.1.

. log n
»on k) = mfIy>u(9.).G(y.0:)> %] (5.56)
Figures 2 and 3 describe the x° in terms of 8,, for some fixed value of y below
and above p(0), respectively. If we define

. log n

bi(nk,y) = SUP[& =0°(»),G(nd) > —:—] ) (5.57

then from Proposition 5.15(b) we see that an alternative interpretation is to
switch to E, if 8, < 8{(n, k, y), for given values of n, k, .

The preceding discussion makes clear some interesting properties of the as-
ymptotic policy of Theorem 5.12 that are intuitively expected. Namely, at each
step, if the average length of the scheduled jobs from the unknown type E,
does not exceed the expected job length from the known type E|, i.c., y =
u(8,), we continue scheduling jobs from E,. Otherwise, we base our decision
on the quantity G(y, 8,), which represents in some sense the cstimated distance

Glyv. &)

Lo

T —

u(8) vo(n, k) u(¥)
v

FiGure 1. Policy =% in terms of y for some fixed value of 6,.
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G('o ‘I ) logn

;{“‘ k~y) ‘.(,) 3
4

FiGURE 2. Policy x° in terms of 8, for some fixed value of y below
n(6).

Gy, ) logn |

)

i(n, k,v) ] 8'(y
LA

FiGure 3. Policy =° in terms of 8, for some fixed value of y above

u(8).

between the distributions of the two types in the parameter space (Kullback and
Leibler [10)) and provides a measure of our confidence that the true value of
8, is really larger than 8,, when the sample average we have observed is larger
than u(86,).

The policy described in Eq. (5.45) is analogous to that developed in the fun-
damental papers by Lai and Robbins [13] and Lai [12]. They refer to the gen-
eral case where there are / unknown experiments to be compared, with the
objective of maximizing the total expected reward for a large planning horizon.
Their asymptotically optimal policy is based on the use of upper confidence
bounds (which essentially estimate the unknown parameters) in the following
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way. If x; is the average of 7} successive observations from experiment E;,
j=1,...,i, the upper confidence bound is defined as

Ui(T.x) = inf[ﬂ > 8y, 1(6,0) > 5‘7'#)-] (5.58)
I

where 0,1 is the maximum likelihood estimate for 8; given (7},x;), and g is a
function that satisfies certain assumptions (cf. Lai [12]), among which is that
g(1) ~ log t~" when ¢ — 0. Then the policy suggests sampling from the experi-
ment with the largest upper confidence bound.

Here, we have seen that for every state (n, k, y) there is a number 6, (n, &, ),
defined in Eq. (5.57), such that if the known parameter 8, of E, is greater than
6{(n, k, y), then it is optimal to continue from E,; otherwise, it is optimal to
switch. Hence, 8;(n, &, y) plays essentially the same role as the upper confi-
dence bounds, if one considers the fact that 7;/N — 0 in Eq. (5.58). The differ-
ence is that in our context 8; is a lower instead of upper confidence bound.
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APPENDIX

Proor oF Proposrrion 3.2: We will show how Egs. (3.9) and (3.10) can be derived from
Eqs. (3.4)-(3.6). Subtracting £, F°(8; n,, n,) from both sides of Eq. (3.4), we get

Ulny,ny, H) = min| U, (n,, ny, H), Us(ny, ny, H), (A.1)

where
Uilny, ny H) = Vi(ny g H) = EyF*(0in.my),  i=12, (A.2)
Vilny,ny, HY = (my + m)r(H; e = 1) + V(n, = 1,ns, H), (A.3)

V,(n,.n,.ﬂ) = (n. + nz)r(H;a - 2) + Eﬂ.m,V(n,.n, -~ l.ﬁ( . IX;)) (A.‘)

From Eq. (2.8) we can obtain the following recursive relations for F*(8; n,, n;):

F(8;ny,ny) = F2(8;n) = 1,m) = mp(6,) + nap’(9), (A.5)
F(8;n;,my) — F*(8;ny,ny = 1) = nyu(6) + mypu*(6). (A.6)
Thus,
Uy(ny,ny, Yy = Vy(ny,ny, H) — EyF*(0; 0y, n3)
= (m + m)p(8) + Vim = |,m, H)
= Ep(nyu(8)) + nau®(8) + F*(0;n, — ), my))
=mc(H,a=1)+U(n ~1,nmH), (A.7)
where

c(Hio=1)=p(8)) ~ Ey(px”(9))

= pu(8,) "f w(0)dH(8) "j w(8,)dH(8)
ul@)<uld)) u(b)zpld))

- f ((8,) — u(8) AH(8). | (A.8)
plB)<uid))

Similarly,
Us(ny,ny, H) = Valny,ny, H) = EyF*(8,n,,ny)
= ("l + n;)E,,p(B) + E](-IM) V(’l“nz - |.ﬁ( . 'Xg))
= Ep(nau(8) + nyu®(0) + F*(8;n),n; = 1)). (A.9)
Applying Lemma 2.1 with g(8) = F*(6; n,, n, = 1), we get
U;(n,,n;,H) = n’(’(”;a = 2) + E/‘.“"U(n“nz -~ l,ﬁ( 'le)), (A.lO)
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where
c(Hia=2)=Ey[p(8)) — E4[pu*(8)]

= L w(0) dH (0] (k, y)) - #(8) dH(8) — f u(8,) dH (8)

w(®)<pid)) RUETEN]

- f (4(8) — x(8,)) AH(6). (A.11)
w9 >ully) n

Lemma A.L: For every function g(k, y) such that Ep . (| 8(k, X;)|) < o we have
that

Eﬂ'"‘o’" [x(k + l.m(k.Y-Xxm

E/(-I'.) lg(k"’ l.m(k-}'-xz))l\(k + 1, m(‘-’.)’.xx»]- (A.12)

Ak, y)
Proor: From Eqs. (2.2), (3.43), and (3.45)
j(x'(k.y)) = A(kl > Lf(xla')eI(0.0ulx)ekl(0.0uln dHo(O)
Ak + 1, m(k, y,x))

iy M), (A.13)

Thus,
E/‘ 'l(l’.lnlg(k + Iv m(koyvxl»l

- f gk + 1, mk, y, xNS(x| k, »)(dx)

Ak + 1,m(k, y, x))
Ak, y)

= fg(k + 1, m(k, y,x)) S(x|8,)v(dx)

i
T Ak, )

and the proof is complete. -

Ep a2k + ), m(k, y, Xa)A(k + |, m(k, y, X3))],

Proor or Prorosmrion 3.10: Using Definition 3.8 and substituting Eq. (3.43) into
Eq. (3.11)

clk,y,a=D)=c(H( |(k,y);a=1)

- 5(0)e* 01N dH,(8), A.l4
ACK, ) Jocs, (B)e 0(8) ( )

clk,yia=2)=c(H(-{(k»)a=2)

1
ALk, y)

f 3(8)eX 1N dEp (9). (A.15)
oz,
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Also from Lemma A.l
Ep e (U(n = Lk + 1,m(k, y, X;))
1
Ak, y)
Thus, Eq. (3.35) is equivalent to

Elk,yia=1) &k, y,a=2) N 1
Atkyy " AlkY) Ak, )

Ef(-l';)lu(n - l,k + "m(kl .V-Xz))/\(k + l-m(kn Y XI»I' (A'lﬂ

Uink,y) = min[n

X E[(."”[U(n - l.k + I.M(k.y. xz))A(k + ]O m(knynxl))l}-

(A.17)
To complete the proof we only need to multiply both sides of Eq. (A.17) by A(k, »)
(where A(k, y) > 0). L

ProoF oF LEMMA 3.11: Part (2) is immediate from the definition of (%, y; «). We will
prove only the first assertion of part (b), because the other two are similar. From Eq.
(3.44) we see that /(8,6,|y) is decreasing in y for & < 8, and increasing in y for 8 > 8,.
Also from Eq. (3.40), 5(8) < 0 (>0) for 8 < 8, (8 > 8,). Thercfore, 5(8)e*'**% 17 is in-
creasing in y for every 8§ € 6, @ # §, and is equal to zero for # = #,. The statement [ol-
lows from this fact and the definition of &(k, y; a = 1).

Part (c) can be easily proved as follows. For « = |, we use Eqgs. (3.45) and (3.49)
to obtain

Ep [Clk + L, m(k, y, X);a = 1))

= fé‘(k + L,mik,y, x);a = 1)f(x[8,)r(dx)

= _f f 6(o)e(k+lllu.hlm(k.y..r)l dﬂo(O)f(xle,)r(dx)
R Ji<d,

- _f f 6(6)6““". |2y +1(8,8,]|x) dHo(O)J‘(xI 9,)[’((11)
R Ji<h,

= - f 5()e*1% 010 f S{x|6)v(dx) dHy(8)
0<0, ®

= - f 8(0)e™ 0 gk, (6) = &k, y;a = 1). (A.18)

f<d
The case o« = 2 can be proved similarly. n
Proor or Lemma 5.1: Equations (5.2) and (5.3) follow from Eqgs. (5.1) and (3.28). Equa-
tion (5.4) is immediate from Eqs. (5.3) and (3.30). ]

PROOF OF LEMMA 5.2: Parts (a) and (b) follow from the expression for / in Eq. (3.44).

For part (¢) we first note that every concave function has at most one maximum and
at most two roots, lying on opposite sides with respect to its maximizing value. Hence,
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vx € R, the equation /(6,6 |x) = 0, besides 6,, has at most one more solution #(x),
possibly not in ©, with the following property:

Fix)y <u'(x) <8, if x<uld) (A.19)
and

6, <u'(x) <B(x) if x> pu(6)). (A.20)
When x > u(8) > u(8,) we get §(x) > u~"(x) > § > 6, thus /(§,6,|x) > 0. [

Proor OF LEMMA 5.3: We need to show that
34 >0:1(k.y)<%.vk=l.2,....yell. (A.21)
It suffices to prove the following intermediate claim:
34 > 0:&(k, u(8,); ) < %. vk=12,...,a=12 (A.22)

Indeed, suppose that Eq. (A.22) holds. Then we consider two cases,
Case a: y = p(6,). From Lemma 3.11(b),

vk y) =&k y,a=1)sé(kp(f))ia=1)< % (A.23)
Case b: y < u(8,). In the same way,
vk y)séky,a=2)<élkplf));a=2)< % (A.24)

So y(k, y) < A/k, ¥k, y, which proves the [emma.
Now we prove the claim stated in Eq. (A.22). Let /&, = supg h,(#). From Eq. (3.50),

§
Sk, p(8);a=2)= f 5(6)e* %0 n Dy (8) db. (A.25)
e,
But /(6,8,|u(8,)) = (6 — 6,)u(8,) — (¢(8) — ¥(6,)) = =1(8,,8), and from Eq. (5.4)
f-8,)° 6-9,)?
e 5 < 16,0, u080) = ~1; 5 W (A.26)
From the mean value theorem
8(6) = ul@) — u(8)) =y (£)(6 -6, (A.27)
for some § € (8,,60). So for § = 6,
5(0) < [(0 - 0,). (A.28)
Now we use inequalities (A.26) and (A.28) to obtain

)
Ek,u(@);a=2) = hho | (8- 8,)e*nie-571 g (A.29)
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Let A = (3346)/1). Then

Elk,pu(8,);a=2)< %(1 —e~th “‘-'-"’1') < %. (A.30)

Following the same procedure we can show that
clkplb))ia=1)< % (A.3)
and Eq. {A.22) is pro.ved. n

PRrROOF OF LEMMA 5.4;

(a) For M,\, @ > 0 the left-hand side of Eq. (5.9) is continuous and decreasing from
o 10 2ero.

(b) For x = x(n), inequality (5.9), replaced by equation, can be rewritten

Ax(n) + alogx(n) =logn + log M. (A.32)
Lete(n) =logn = Ax(n), B=alogA + log M. Then
—e(n) + alogx(n) =logM (A.33)

or, equivalently,
~e(n) + xlog(hAx(n)) = B.

Substituting Ax(n) from Eq. (A.32) we get

alog x(n) > log M
logn logn

e(n) - alog(! - ) = « log(log n) — B. (A.39)

Note that Eq. (A.32) implies that x(n) = O(loga) and lim,_, x(n) = os;
therefore,

lim log x{n) = lim log x(n) lim x(n) _

0.
N 'O‘ﬁ awem  x(N) nwe logn

Hence,

lim log

e

(l _ alogx(n) N IogM) =0,
log n log n

Thus, dividing both sides of Eq. (A.34) by log(log n) and taking the limit as
n— o, we get

im L) B
a-w= log(logn)

which completes the proof. n

Proor oF LEMMA 5.6: The proof is based on Lemma 5.5. From Eqgs. (3.49) and (3.50)
we get
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&
ékyia=1)=~- f 3(6)e*! 0N . (8) db, (A.35)
$

¢
Ek,y;a=2)= | 5(8)et"01»p (8) db. (A.36)
0

1. We first consider the case @ = 1. From Lemma 5.2, when y > u(8,),((6,8,/y)

attains its maximum in the interval (8,8,) for # = @,, which is the upper limit of
the integral. To bring the expression into the appropriate form for Lemma $5.5
to be applicable, change the variable of integration to r = —6. Then

T
Ekyia=1)=~=]| §(m)et"nINE (7)dr, (A.37)

L
where 7= —8, 7, = —8,, 8(7) = 8(~7), Ay(7) = hy(~7), and
lr,n /) =l(=r,=n\/y)= (1, = 1)y = ($(=1) = ¥(~7))).  (A.38)
Let g,(7) = 8(r)ho(7), £2(7) = I(r,7,/y). Because §(r) ~ &(7)(r = 7,) =
=¥"(0))(r — 7)) and g3(7) = =y + p(=7) = uid,) = y, as v — 7,, we can sce
that g, and g; satis(y the conditions of Lemma 5.5 witha =7,, =7, /{a) =0,

b=y—u(6,), d=ho(0;)¥"(8,), »=1, and A = 2. Thus, as k - o, Eq. (A.37)
becomes

! )* _ hol8)¥"(8))

k,yia=1)~ o'orz( - .
(hyia=h ~ RGN OIT O =65 ) = O - nins®

which proves Eq. (5.11).

2. We now consider the case o = 2 and each one of the three subcases.

(@) u(8,) <y < p(B). In this case /{8, 8, /y) atrains its maximum in (8,, ) for
8 = 0°(y), while from Lemma 5.2(b) 1{8°( »),8,|y) = 1(8°(»),6,). Because
the maximizing point is interior to the area of integration, we break the in-
tegral in two parts

0" é
kyia=2) = 3(0)e*"® 1N h(8) db + f 5(0)eX' %10 p. (8) df.
..

L
(A.39)

A change of the integration variable similar to the previous is also needed

for the first integral in the preceding expression. After this, Lemma 5.5 is
again applicable to both terms in the right-hand side of Eq. (A.37), with

Ha) =1(8%(p),6,), b= ~¢"(8°(y)), d = 8(8°( ¥ ) ho(6°(¥)), v =2, and
A = . Thus, for k — ¢,

a5 08 (YN (6°())) (1)(___2 )m KHO"(),8))
thya=2)~2 2 "GI\Feonr) ¢ '

2x -
=8(0%(y)hy(0°® S 7L SO N
(0% (N ho(0°(»)) 14'(0‘()'))!:‘

Thus, we have established Eq. (5.12).
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In the remaining cases (b) and (c), for which y = u(#), {(8,6,|y) is
maximized in (8;,8) for & = §, and a change of variable 7 = —# is again
necessary.

(b) y = p(8). Then (3/(8,6,/y)) /3y = 0 for § = 8,, and the assumptions of
Lemma 5.5 apply with b = y*(#), d = 6(6)hy{8), » = 2, and X\ = 1. Thus,

as k- oo, '
o 8(8)ho(8) (_1_) ( 2 )m k18,8,

= 5(8)ho(d) ,zw':ﬂk et.01n (A.40)

which proves Eq. (5.13).
(c) y > u(f). Then b=y — u(8), d = 6(6)hy(8), » = 1, and X\ = L. Thus, as

k— oo,
|
ek, yia =2) ~ 8(H g (BN (1) ~———s— 0110
(o yse (e y = Ok
kitd 81
- 8(8)hy(6) f ' _ (A1)
y—n(8) x n
PROOF 0¥ LEMMA 5.7: The proof follows the same lines as that of Lemma 5.6. n
PRroOF oF PROPOSITION 5.15:
(a) From Lemma 5.} we get
al(e*(y).4,) _ aI(8°,8,) dé*(y) _ ae _
o -— s i 6*(y) -6, >0, (A.42)
for u(8,) < y < u(8). From Definition 3.8 and Lemma 5.2,
MO0 _5_ 4 50, (A.43)
ay

Thus G is increasing in both ranges of y. It remains to show that G and 4G/3y
are continuous at y = u(f). The former assertion is immediate from Lemma
5.2(b) and the jatter from comparison of £qs. (A.42) and (A.43) at the partic-
ular ).

(b) For u(8)) < y < u(d),

3G(x.8) _ 31(6°(»),0,)
28, 30,

= =p(0°(p) + u(8;) = -y + u(d)) <0,
(A.49)
while for y = u(8)

3G(,6,) _ 31(8,6,y)
26, a8,

which completes the proof of monotonicity. The last two assertions are again
immediate from Lemma 5.1 and Definition 3.8. |

==—y+u(f) <0, (A.45)




