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Abstract

A simulation method is developed, to find an optimal policy for the expected average
reward of a Markovian Decision Process. It is shown that the method is consistent, in
the sense that it produces solutions arbitrarily close to the optimal. Various types of
estimation errors are examined, and bounds are developed.

1. Introduction. Consider the problem of finding optimal policies for a finite state/action
space Markovian Decision Process, when the criterion is the expected average reward. Var-
ious computational methods have been proposed for this problem, such as value iteration,
policy improvement, linear programming etc..

In this paper we develop a simulation algorithm. The algorithm substitutes the value
determination phase of the Policy Improvement method (i.e. the solution of typically large
scale systems of linear equations) with simulation, and it is readily implementable in an
environment of parallel processing. It is shown that it produces policies with expected
average reward arbitrarily close to the optimal.

Specifically, the method is based on simulating independent cycles of the underlying Markov
process for a policy under consideration. We develop estimates of the average and differential
rewards, as well as of the test quantities that are used in the policy improvement step.
However, since only estimates of these quantities are available, the estimation errors may
affect the outcomes of the optimality testing and the improvement step. We solve this
problem by obtaining bounds for the test quantities and using these instead of the estimates.
These bounds are simultaneous, hold with probability one and converge to the true values
as the number of samples increases.

In section 2 we describe the problem and outline the policy improvement method and
the optimality equations. In section 3 we develop an iterative simulation algorithm which
converges almost surely to at least an ε − optimal policy in finite number of steps. The
convergence of the algorithm is assured given the existence of an estimation procedure which
can be used in place of the policy evaluation phase to produce a set of bounds for the test
quantities that satisfy almost sure convergence conditions. In section 4 we describe such
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an estimation procedure which as we prove satisfies the necessary conditions for the correct
behavior of the algorithm.

The derivation of probability one bounds is based on the following important observation.
The estimation errors of the average and differential rewards associated with the policy
under consideration satisfy the policy evaluation equations of a problem with the same
transition mechanism and suitably modified reward structure. Therefore they are them-
selves expected average and differential rewards for the modified problem.

The simulation and estimation mechanism is based on the regenerative simulation method
proposed in ? and ? for a problem without decisions. Bounds for the optimal expected
average reward as well as the finite horizon and discounted rewards, when the transition
matrix is subject to small perturbations are derived in ?. ? report computational compar-
isons among various methods using bound approximations and action elimination in the
value iteration for the discounted problem. ? develop an adaptive estimation mechanism
for the problem of unknown transition and/or reward structure. For additional information
on the related topic of adaptive control of Markov Processes the reader is referred to ?, ?,
? and references therein.

2. The Model-Background. Consider a Markovian Decision Process described by
{S,A(x), x ∈ S, P,R}, where S is the state space, A(x) is the action set in state x, x ∈ S,
P = (pxy(a))x,y∈S,a∈A(x) is the transition mechanism, and R = (r(x, a)) x∈S,a∈A(x) is the
reward structure.

A policy π is generally defined as a random mechanism

P [At = at] = πt(at|x0, a0, . . . , xt−1, at−1, xt).

A policy π is deterministic if there exists a sequence of functions {ft : S →
⋃
x∈S A(x), t =

0, 1, . . . , }, such that ft(x) ∈ A(x), ∀x, t and

πt(at|x0, a0, . . . , xt−1, at−1, xt) = 1 or 0

according to whether at = ft(xt) or not. A policy is stationary if πt, ft do not depend on t.
Let D denote the set of all policies and D the set of all deterministic stationary policies.

The expected long term average reward associated with policy π and initial state X0 = x is
defined as g(x, π) = lim supN→∞

1
N+1

∑N
t=0E(r(Xt, At)|x, π).

A policy π0 is optimal with respect to the expected average reward criterion if g(x, π0) ≥
g(x, π),∀x ∈ S, π ∈ D.
For each policy f ∈ D and initial state X0 = x0 ∈ S, the resulting stochastic process
{Xt, t = 0, 1, . . .} is Markov with state space S, transition matrix P (f) = (pxy(f(x)))x,y∈S ,
and reward function r(f) = (r(x, f(x))) x∈S .

Let px(a), px(f) denote the probability row vectors (pxy(a))y∈S , (pxy(f(x)))y∈S , respec-
tively. Also for any function h(x) defined on S, let h denote the column vector (h(x)) x∈S ,
and px(a)h the inner product

∑
y∈S pxy(a)h(y).

Assumption 2.1 We assume the following.
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1. The state and action spaces S,A(x), x ∈ S are finite sets.

2. P (f) is irreducible for all f ∈ D.

Under assumption 2.1 the expected average rewards associated with a policy do not depend
on the initial state. For this case it is well known (e.g. ?, ?) that there exists an optimal
deterministic stationary policy f , if and only if there exist bounded solutions to the following
system of functional equations

g + h(x) = max
a∈A(x)

{r(x, a) + px(a)h}, x ∈ S. (2.1)

Optimal policies are defined by the maximizing actions in the above equations.

The Policy Improvement method starts with an arbitrary policy f0 ∈ D at iteration 0.
Iteration n proceeds as follows.

1. At the policy evaluation phase compute gfn , hfn(x), x ∈ S as the unique solution to
the following system of linear equations,

gfn + hfn(x) = r(x, fn(x)) + px(fn)hfn , x ∈ S. (2.2)

where, we use the normalization hfn(0) = 0, for a fixed but arbitrarily chosen state 0
in S.

2. At the policy improvement phase compute the test quantities φfn(x, a), x ∈ S, a ∈ A(x)

φfn(x, a) = gfn + hfn(x)− (r(x, a) + px(a)hfn)

= r(x, fn(x))− r(x, a) + (px(fn)− px(a))hfn . (2.3)

3. The current policy fn is optimal iff

φfn(x, a) ≥ 0 , ∀ x ∈ S, a ∈ A(x). (2.4)

4. If (2.4) is violated at some states, a new policy fn+1 , not necessarily uniquely defined,
for iteration n+ 1 is constructed by

fn+1(x) = arg min
a∈A(x)

φfn(x, a). (2.5)

3. The Simulation Algorithm. Recall that termination – computation of improved
policies at every step of the Policy Improvement procedure is determined by the optimality
conditions (2.4) : φf (x, a) ≥ 0,∀ x ∈ S, a ∈ A(x).

Instead of solving (2.2), we perform simulation to obtain estimates ĝf , ĥf (x), φ̂f (x, a) of
gf , hf (x), φf (x, a) , and use them for the optimality testing in (2.4). The estimation errors

however may cause an incorrect conclusion of an optimality testing of the form φ̂f (x, a) ≥ 0,
and of the corresponding improvement step. This problem can be overcome if we modify
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the optimality/improvement steps, using suitably defined bounds for φf (x, a) instead of the

estimates φ̂f (x, a).

In this section we postulate the existence of an estimation procedure which, for any policy
f ∈ D, computes estimates ĝf , ĥf (x), φ̂f (x, a) of gf , hf (x), φf (x, a) , and random variables

Lφ,ft (x, a), Uφ,ft (x, a) with the following properties

(P1) Lφ,ft (x, a) ≤ φf (x, a) ≤ Uφ,ft (x, a), ∀x ∈ S, a ∈ A(x),

(P2) Lφ,ft (x, a), Uφ,ft (x, a) → φf (x, a) with probability 1 as t → ∞, where t denotes the
number of simulation transitions.

An estimation procedure that satisfies P1,P2 is presented in the next section.

We show that, under this assumption, there exists an ε− optimal simulation algorithm, i.e.
for any ε > 0 there exists a simulation algorithm A(ε) which after an almost surely finite
number of transitions produces a policy f such that gf∗ − gf < ε, where f∗ is an optimal
policy.

Let

Mu(f, t) = min
x∈S,a6=f(x)

Uφ,ft (x, a), (3.1)

Ml(f, t) = min
x∈S,a6=f(x)

Lφ,ft (x, a). (3.2)

For any ε > 0, algorithm A(ε) is defined as follows.

Iteration 0 At iteration n = 0 select an arbitrary policy f0 ∈ D.

Iteration n At iteration n, with policy fn ∈ D,

1. Apply the simulation procedure for the minimum number t of transitions re-
quired, so that one of the following conditions is satisfied.

(C-a) Mu(fn, t) < 0,

(C-b) Ml(fn, t) > 0, or

(C-c) Ml(fn, t) > −ε.
2. If condition C-a is satisfied, then

Construct policy fn+1 as follows

fn+1(x) =

{
arg mina∈A(x) U

φ,fn
t (x, a) , if mina∈A(x) U

φ,fn
t (x, a) < 0

fn(x) , otherwise.
.

(3.3)

Return to Iteration n+ 1 with policy fn+1.

If condition C-b is satisfied, stop and return fn as the unique optimal policy.

If condition C-c is satisfied, stop and return fn as an ε–optimal policy.
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Let f1, f2 ∈ D, dg = gf2 − gf1 , and dh(x) = hf2(x)− hf1(x), x ∈ S.

In order to analyze the convergence of algorithm A(ε) we need the following lemma.

Lemma 3.1

1. For any two policies f1, f2 ∈ D the quantities dg, dh(x), φf1(x, f2(x)), x ∈ S satisfy
the following relations

dg + dh(x) = −φf1(x, f2(x)) + px(f2) d
h, x ∈ S. (3.4)

2. If for some policy f ∈ D there exists ζ > 0, such that φf (x, a) > −ζ,∀ x ∈ S, a ∈ A(x),
then

gf∗ − gf < ζ. (3.5)

Proof. To prove part 1, consider the policy evaluation equations for policy f2

gf2 + hf2(x) = r(x, f2(x)) + px(f2)hf2 , x ∈ S. (3.6)

Using the definitions of dg, dh(x), the above relation can be rearranged as follows

dg + dh(x) = −(gf1 + hf1(x)− r(x, f2(x))− px(f2)hf1) + px(f2) d
h. (3.7)

The quantity inside the parentheses on the right hand side of (3.7) is equal to φf1(x, f2(x))
by definition. Thus (3.4) follows.

We next prove part 2. A direct consequence of part 1 is that the difference dg is equal to
the expected average reward of a Markov Reward Process with transition matrix P (f2) and
rewards are equal to the opposite of the test quantities φf1(x, f2(x)). Therefore

dg = −
∑
x∈S

πf2(x)φf1(x, f2(x)) ,

where πf2 is the steady state probability vector of P (f2). Thus if φf1(x, a) > −ζ, x ∈ S, a ∈
A(x), then dg < ζ. (3.5) follows letting f1 = f, f2 = f∗. 2

Theorem 3.2 For any ε > 0, under the assumption of existence of an estimation scheme
satisfying properties P1 and P2, algorithm A(ε) stops with probability one after a finite total
number of transitions, with a policy f such that gf∗ − gf < ε, where f∗ is an optimal policy.

Proof. Since the total number of deterministic stationary policies is finite, it suffices to
show that , for any n, iteration n of algorithm A(ε) will stop with probability one after
a finite number of simulation transitions and either it will correctly conclude that fn is
ε− optimal, i.e. g∗f − gfn < ε, or it will produce a new policy fn+1, to be used in iteration
n+ 1, such that gfn+1 − gfn > 0.
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In order to prove this claim, consider iteration n and distinguish the following cases.

Case 1. Assume that at iteration n policy fn satisfies min x∈S,a∈A(x) φfn(x, a) ≥ 0, i.e it is
optimal.

Since Uφ,fnt ≥ φfn(x, a), the algorithm will always find Uφ,fnt (x, a) ≥ 0, ∀x ∈ S, a ∈ A(x),
therefore iteration n will not stop under condition C-a.

In addition, since Lφ,fnt (x, a) → φfn(x, a) ≥ 0 w.p. 1, as t → ∞, it follows that for
all x ∈ S, a ∈ A(x), a 6= fn(x) there exists, w.p. 1, a finite number t(x, a) such that

Lφ,fnt (x, a) > −ε, ∀ t > t(x, a). Thus Ml(fn, t) > −ε ∀t > t0, where t0 = max t(x, a).

The last inequality means that there exists, w.p. 1, a finite number t0, such that after at
most t0 transitions within iteration n, one of the conditions C-b and C-c will be satisfied,
and iteration n will terminate either with the conclusion that fn is optimal, or that it is
ε− optimal, both of which conclusions are correct.

Case 2. Assume that at iteration n policy fn satisfies −ε ≤ min x∈S,a∈A(x) φfn(x, a) < 0,
i.e., from Lemma 3.1, fn is ε− optimal.

In this case the algorithm will always find that Lφ,fnt (x, a) < 0 for at least one pair (x, a),
thus iteration n will not stop under condition C-b.

Because Lφ,fnt x, a, Uφ,fnt (x, a) → φfn(x, a) w.p. 1, it follows with the same reasoning as in
case 1, that, w.p. 1, after a finite number of transitions within iteration n, either condition
C-a or condition C-c will be satisfied and the iteration will stop. If it stops under condition
C-c, the correct claim that fn is ε− optimal will be made. If it stops under C-a, then a new
policy fn+1 will be derived. By definition of fn+1 we have that Uφ,fnt (x, fn+1(x)) < 0, ∀x
such that fn+1(x) 6= fn(x), thus,

φfn(x, fn+1(x)) ≤ 0, ∀x ∈ S,

with strict inequality for at least one state x. Therefore from Lemma (3.1) it follows that
gfn+1 − gfn > 0.

Case 3. Assume that at iteration n policy fn satisfies min x∈S,a∈A(x) φfn(x, a) < −ε.

In this case the algorithm will always find that Lφ,fnt (x, a) < −ε ∀t, for at least one pair
(x, a), thus iteration n will not stop under conditions C-b or C-c.

Since Uφ,fnt (x, a) → φfn(x, a) < −ε w.p. 1, for at least one pair (x, a), it follows the same
way as in case 1, that after a finite number of transitions a new policy fn+1 will be produced,
which is strictly improved with respect to fn.

Therefore the claim has been proved for all cases, and the proof of the theorem is complete.
2

4. The Estimation Procedure. In this section we develop an estimation procedure
which satisfies properties P1 and P2 described in section 3, and therefore assures the correct
behavior of algorithm A(ε). The procedure works as follows.
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Select a fixed state 0 which from now on will be used as the state of reference. A cycle is
defined as the number of transitions between two successive returns to state 0. At iteration
n of the algorithm A(ε), with policy fn under consideration, the Markov Reward Process
with transition matrix P (fn) and reward vector r(fn) = r(x, fn(x)), x ∈ S is simulated
for a number of cycles. During the simulation estimates of gfn , hfn(x) are calculated, using
an estimation scheme which will be described in detail. Using these estimates and based
on a number of intermediate results, we show the existence of lower and upper bounds
Lφ,fnt (x, a), Uφ,fnt (x, a) for the test quantities φfn(x, a), that satisfy P1,P2.

We first define a set of random variables which will be used in the development of the
estimation method.

Let f = fn be the policy used in iteration n of the algorithm. Index t denotes the step
number (simulation transition) within any iteration n. Index j denotes the jth cycle within
any iteration n. A cycle is considered as a sample of our estimation scheme, therefore j
also represents the jth sample within a single iteration. Both j and t are reset to zero at
the beginning of each iteration n.

Let P fx , Efx denote the probability distribution and the expectation respectively, with re-
spect to transition matrix P (f) and initial state x.

Let βf0 = 0, and

βfj = min{t ≥ βfj−1 + 1, Xt = 0, Xi 6= 0, i = βfj−1 + 1, . . . , t− 1}, j = 1, 2, . . . (4.1)

denote the successive return epochs to state 0, when policy f ∈ D is used.

Also let

Afj (x) = min{t : βfj ≤ t ≤ β
f
j+1 − 1, Xt = x}. (4.2)

represent the epoch of first visit to state x between the jth and the (j + 1)st recurrence to
state 0, under policy f , assuming that min ∅ = +∞.

Define

Ifj (x) = 1{Afj (x) <∞} =

{
1 , if state x is visited during the jth cycle
0 , otherwise

, (4.3)

T fj (x) = Ifj (x)(βfj+1 −A
f
j (x)), (4.4)

W f
j (x) = Ifj (x)

βf
j+1−1∑

t=Af
j (x)

r(Xt, f(Xt)). (4.5)

The random variables T fj (x),W f
j (x) represent the number of transitions and the reward

obtained in the time interval between the first visit to state x and the next recurrence to
state 0, during the jth cycle. If x is not visited in the jth cycle, they are set equal to 0 1.

1It is easy to see that Ifj (0) = 1, Af
j (0) = βf

k , T
f
j (0) = βf

j+1 − βf
j .
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Remark 4.1 As a direct consequence of the fact that every state of a positive recurrent
Markov chain is a regeneration point of the process, we observe that the random vectors

Vj = {βfj , I
f
j (x), Afj (x), T fj (x),W f

j (x), } x ∈ S, j = 1, 2, . . .

are independent and identically distributed. This property will be used to prove the con-
sistency of our estimation procedure.

Lemma 4.2 The quantities gf , hf (x), x ∈ S are given by

gf =
Ef [W f

j (0)]

Ef [T fj (0)]
(4.6)

and

hf (x) =
Ef [W f

j (x)]− gfEf [T fj (x)]

P f [Ifj (x) = 1]
. (4.7)

Proof. From ?, p.66 (see also ?, p.126) ) we obtain the following interpretation of gf , hf (x),
as conditional expectations given a policy f and an initial state x

gf =
Ef0 [

∑βf
1−1
t=0 r(Xt, f(Xt))]

Ef0 [βf1 ]
, (4.8)

and

hf (x) = Efx [

βf
1−1∑
t=0

(r(Xt, f(Xt))− gf )]

= Efx [

βf
1−1∑
t=0

r(Xt, f(Xt))] − gfE
f
x [βf1 ]. (4.9)

From the definition of W f
j (x) we see that ∀ x ∈ S

Ef [W f
j (x)] = Ef [Ef [W f

j (x)/Ifj (x)]]

= P f [Ifj (x) = 1]Ef [W f
j (x)/Ifj (x) = 1]. (4.10)

But

Ef [W f
j (x)/Ifj (x) = 1] = Ef [W f

1 (x)/If1 (x) = 1]

= Efx [

βf
1−1∑
t=0

r(Xt, f(Xt))], (4.11)

where the first equality follows from Remark (4.1) and the second from the Markov property.
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In a similar manner we can show that

Ef [T fj (x)] = P f [Ifj (x) = 1]Ef [βf1 ]. (4.12)

Since all states are positive recurrent, P f [Ifj (x) = 1] > 0, x ∈ S.

Relations (4.6) and (4.7) follow from (4.8)–(4.12). 2

Assume that k samples V1, . . . , Vk of the random vector V , defined in Remark (4.1), have
been obtained, after simulating the process for k cycles using policy f . Then we form the
following estimates for the expected average and differential rewards and the test quantities
associated with f

ĝf =
W

f
k(0)

T
f
k(0)

, (4.13)

ĥf (x) =
W

f
k(x)− ĝfT

f
k(x)

I
f
k(x)

, x ∈ S, (4.14)

φ̂f (x, a) = r(x, f(x))− r(x, a) + (px(f)− px(a)) ĥf , (4.15)

where I
f
k =

∑k
j=1 Ijx/k, T

f
k =

∑k
j=1 T

f
j (x)/k, W

f
k

∑k
j=1W

f
j (x)/k. If I

f
k(x) = 0 , we set

ĥf (x) arbitrarily. Note that ĥf (0) = 0, which is consistent with the adopted normalization.

For notational simplicity we do not specifically indicate the dependence of the estimates
ĝf , ĥf , φ̂f on the sample size k. This will also be true for all the quantities defined as
functions of the estimates throughout this section.

Lemma 4.3 ĝf and ĥf (x), φ̂f (x, a), x ∈ S, a ∈ A(x) are strongly consistent estimates of
gf and hf (x), φf (x, a), x ∈ S, a ∈ A(x) respectively.

Proof. From Remark (4.1) and the strong law of large numbers we get that W
f
k(x) →

Ef [W f
j (x)], T

f
k(x) → Ef [T fj (x)], I

f
k(x) → Ef [Ijx] = P f [Ikx = 1], w.p. 1 as n → ∞. Note

that all the involved expectations are finite, because of the bounded rewards and the irre-
ducibility assumption. The lemma now follows from lemma (4.2). 2

In order to develop bounds Lf (x, a), Uf (x, a) for φf (x, a) we need two intermediate results
which are presented in Lemma 4.4 and Lemma 4.5 below. Although the results of Lemma
4.4 are contained in ?, the proof is presented here for completeness.

Let
mf (x) = Efx [βf1 ], (4.16)

denote the expected first passage time from state x to state 0 under policy f . The quantities
mf (x), x ∈ S are the unique solution to the following system of equations

mf (x) = 1 +
∑
y 6=0

pxy(f(x))mf (y), x ∈ S. (4.17)
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Also let

m̂f (x) =
T
f
k(x)

I
f
k(x)

, x ∈ S, (4.18)

and

ηm,f (x) = m̂f (x)− (1 +
∑
y 6=0

pxy(f(x))m̂f (y)), (4.19)

ηm,fmin = min
x∈S

ηm,f (x). (4.20)

m̂f (x) is a strongly consistent estimate of mf (x). ηm,f (x) represents the difference between
the left and right hand side of (4.17), when the estimates m̂f (x) are used instead of the
true values mf (x).

Lemma 4.4 The quantities mf (x), x ∈ S are bounded as follows

mf (x) ≤ Um,f (x), (4.21)

where

Um,f (x) = m̂f (x)(1− ρm,f

1 + ρm,f
), (4.22)

ρm,f = max{ηm,fmin,−1} . (4.23)

Proof. Let δm,f (x) = m̂f (x) −mf (x) denote the estimation error of m̂f (x). Substituting
m̂f (x) and m̂f (y) into (4.19) we get

δm,f (x) = ηm,f (x) +
∑
y 6=0

pxy(f(x))δm,f (y). (4.24)

Thus δm,f (x) represents the expected first passage reward from state x to 0 under reward
structure ηm,f (x), i.e.

δm,f (x) = Efx [

βf
1−1∑
t=0

ηm,f (Xt)]. (4.25)

Therefore the following inequality is immediate

δm,f (x) ≥ ηm,fminm
f (x).

On the other hand since by definition m̂f (x) > 0, x ∈ S, it follows that

δm,f (x) > −mf (x).

Combining the last two inequalities we obtain

δm,f (x)/mf (x) ≥ ρm,f . (4.26)
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We now observe that

δm,f (x)

m̂f (x)
=

δm,f (x)

mf (x) + δm,f (x)

=
δm,f (x)/mf (x)

1 + δm,f (x)/mf (x)
(4.27)

Since the function f(x) = x/(1 +x) is increasing in x for x > −1, it follows from (4.26) and
(4.27) that

δm,f (x) ≥ ρm,fm̂f (x)

1 + ρm,f
,

from which (4.21) is immediate. 2

Let

δg,f = ĝf − gf , (4.28)

δh,f (x) = ĥf (x)− hf (x) , (4.29)

represent the estimation errors of ĝf , ĥf (x), and

ηg,f (x) = ĝf + ĥf (x)− (r(x, f(x)) + px(f) ĥf ) . (4.30)

the deviation of the policy evaluation equations (2.2) for policy f , when the estimates for
g, h are used instead of the true values. Also let

ηg,fmin = min
x∈S

ηg,f (x),

ηg,fmax = max
x∈S

ηg,f (x).

Lemma 4.5

1. The error δg,f is bounded as follows

ηg,fmin ≤ δ
g,f ≤ ηg,fmax. (4.31)

2. The error δh,f (x) is bounded as follows

|δh,f (x)| ≤ Uh,f (x), ∀x ∈ S, (4.32)

where

Uh,f (x) = (ηg,fmax − η
g,f
min)Um,f (x), x 6= 0, (4.33)

Uh,f (0) = 0.

3. Uh,f (x)→ 0 w.p. 1, as k →∞, ∀x ∈ S.
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Proof. The assertion is immediate for x = 0, because hf (0) = ĥf (0) = 0. Let x 6= 0. From
(4.28), (4.29), (4.30) we get

ηg,f (x) = (gf + δg,f ) + (hf (x) + δh,f (x))− ( r(x, f(x) + px(f) (hf + δh,f ) )

= δg,f + δh,f (x)− px(f) δh,f ,

hence,
δg,f + δh,f (x) = ηg,f (x) + px(f) δh,f , x ∈ S. (4.34)

Thus the estimation errors satisfy a set of policy evaluation equations, with transition matrix
P (f) and reward at state x ∈ S equal to ηg,f (x). Let πf (x), x ∈ S denote the stationary
probability vector of P (f). Then

δg,f =
∑
x∈S

πf (x)ηg,f (x), (4.35)

therefore
ηg,fmin ≤ δ

g,f ≤ ηg,fmax. (4.36)

This proves (4.31).

In order to prove part 2 we observe that the quantities δh,f (x), x ∈ S play the role of the
differential rewards for the modified process, and thus, according to (4.9),

δh,f (x) = Efx [

βf
1−1∑
t=0

(ηg,f (x)− δg,f )]. (4.37)

Using (4.37) and (4.31) we derive the following bounds for δh,f (x).

(ηg,fmin − η
g,f
max)mf (x) ≤ δh,f (x) ≤ (ηg,fmax − η

g,f
min)mf (x).

Now (4.32) can be shown by applying the results of Lemma 4.4 for mf (x) and observing

that ηg,fmin − ηg,fmax ≤ 0.

For part 3 we have that ηg,f (x) → 0, ∀x ∈ S, w.p.1, as the sample size increases, which

follows from Lemma 4.3. Therefore ηg,fmax − η
g,f
min → 0, w.p. 1, as k →∞. 2

We can now prove the main result of this section.

Let

Lφ,f (x, a) = φ̂f (x, a)− ρφ,f (x, a), (4.38)

Uφ,f (x, a) = φ̂f (x, a) + ρφ,f (x, a), (4.39)

where
ρφ,f (x, a) =

∑
y∈S
|pxy(f(x))− pxy(a)|Uh,f (y). (4.40)
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Theorem 4.6 The quantities Lφ,f (x, a), Uφ,f (x, a) defined in (4.38), (4.39) satisfy proper-
ties P1, P2 in section 3, i.e.

Lφ,f (x, a) ≤ φf (x, a) ≤ Uφ,f (x, a), ∀x ∈ S, a ∈ A(x), (4.41)

and
Lφ,f (x, a), Uφ,f (x, a)→ φf (x, a),w.p. 1, as k →∞. (4.42)

Proof. Let δφ,f (x, a) = φ̂f (x, a)− φf (x, a) denote the estimation error of φ̂f (x, a). Substi-

tuting φf (x, a), φ̂f (x, a) from (2.3) and (4.15) we find

δφ,f (x, a) = (px(f)− px(a)) δh,f , (4.43)

therefore

|δφ,f (x, a)| ≤
∑
y∈S
|pxy(f(x)− pxy(a)| |δh,f (y)|

≤
∑
y∈S
|pxy(f(x)− pxy(a)|Uh,f (y)|,

= ρφ,f (x, a),

where the second inequality follows from Lemma 4.5.2. This proves (4.41).

In order to prove (4.42), we note that ρφ,f (x, a) → 0 w.p.1 as k → ∞, ∀x ∈ S, a ∈ A(x),
which follows from Lemma 4.5.3. In addition, hfi(x, a) → φf (x, a) w.p.1, because φ̂f is
strongly consistent. Thus, Lφ,f (x, a), Uφ,f (x, a)→ φf (x, a), w.p.1 as k →∞. 2

Remark 4.7 With respect to computational implementation of the algorithm, parallel sim-
ulation techniques can be readily applied. Since under any policy f successive cycles are
independent, the estimation procedure can be distributed to different processors of a mas-
sively parallel system. Each one of a group of “simulator” processors performs simulation
of recurrence cycles and computes one sample Vj from every cycle. This sample is then sent
to a “data collecting” processor, which is responsible for combining the samples into the
estimates, computing the bounds, testing for optimality and performing the policy improve-
ment step. Each time a new iteration of algorithm A(ε) is started, all simulating processors
are restarted with the new policy. Under this parallelization scheme, the simulator pro-
cessors can work asynchronously, and the only synchronization is performed when a policy
changes.
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