
The LC* Assignment Policy
for Cluster-Based Servers

Victoria Ungureanu
Department of MSIS, Rutgers University
180 University Ave., Newark, NJ 07102

ungurean@research.rutgers.edu

Benjamin Melamed
Department of MSIS, Rutgers University
94 Rockafeller Rd., Piscataway, NJ 08854

melamed@rbs.rutgers.edu

Michael Katehakis
Department of MSIS, Rutgers University
180 University Ave., Newark, NJ 07102

mnk@andromeda.rutgers.edu

Abstract

A cluster-based server consists of a front-end dispatcher
and multiple back-end servers. The dispatcher receives
incoming jobs, and then decides how to assign them to
back-end servers, which in turn serve the jobs according to
some discipline. Cluster-based servers have been broadly
deployed as they combine good performance with low cost.

Several assignment policies have been proposed for
cluster-based servers, most of which aim to balance the
load among back-end servers. There are two main strate-
gies for load balancing: The first strategy aims at balancing
the amount of work at back-end servers, while the second
strategy aims at balancing the number of jobs assigned to
back-end servers. Example of policies using these strategies
are JSQ (Join Shortest Queue) and LC (Least Connected),
respectively.

In this paper we propose a policy, called LC*, which
combines the two aforementioned strategies. The paper
shows experimentally that when preemption is admitted (i.e.
jobs are executed concurrently by back-end servers), LC
substantially outperforms both JSQ and LC. This improved
performance is achieved by using only information readily
available to the dispatcher, and therefore LC* is a practical
policy in regards to implementation.

Keywords: cluster-based servers, back-end server
architecture, job preemption, simulation.

1 Introduction

Web servers are becoming increasingly critical as the In-
ternet assumes an ever more central role in the telecom-

munications infrastructure. Applications that handle heavy
loads, commonly use a cluster-based architecture for Web
servers because it combines good performance with low
cost. A cluster-based server consists of a front-end dis-
patcher and several back-end servers (see Figure 1). The
dispatcher receives incoming jobs and then decides how to
assign them to back-end servers, which in turn process the
jobs according to some discipline. The dispatcher is also re-
sponsible for passing incoming data pertaining to a job from
a client to a back-end server. Accordingly, for each job in
progress at a back-end server there is an open connection
between the dispatcher and that server [13, 17].

Back-end
server 1

Dispatcher

Back-end
server 2

Back-end
server n

. . .

Figure 1. A cluster-based Web server.

Several dispatcher assignment policies have been pro-
posed for this type of architecture (see, e.g. [4, 16]). One
of the most well-known policies is JSQ (Join the Shortest
Queue). Under JSQ, the dispatcher assigns an incoming job
to the back-end server with the smallest amount of resid-
ual work, i.e., the sum of service demands of all jobs in the
server queue plus the residual work of the jobs currently
being served. It has been shown in [18] that JSQ is the opti-
mal policy (i.e. it minimizes the expected response time) if:
(a) jobs arrive at the dispatcher according to a Poisson pro-
cess, (b) job sizes follow an exponential distribution, and (c)
jobs are served FCFS (first-come first-served) at each server

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

queue.
However, the optimality of JSQ comes with several

caveats. First, there is a great deal of evidence suggesting
that the sizes of files traveling on the Internet do not follow
an exponential-type distribution. Rather, these sizes appear
to follow power-law (heavy-tailed) distributions [3, 7, 8]
of the form IP�� � �� � �

�
�
� where � is the random file

size, � � �, and � � � � �. For power-law job-size dis-
tributions, a relatively small fraction of jobs accounts for a
relatively large fraction of the overall load.

Second, JSQ requires the dispatcher to know the status of
all back-end servers at all times. This type of information
is difficult, if at all possible, to acquire, and consequently,
JSQ has not been used in practice [13, 17]. Rather, commer-
cial products predominantly use the LC (Least-Connected)
policy [5], under which the dispatcher assigns a job to the
back-end server currently processing the smallest number
of jobs (i.e., the one with the least number of open connec-
tions to the dispatcher). Note that both JSQ and LC aim
to balance the load among back-end servers. However they
employ different strategies to achieve this goal: JSQ aims
to balance the amount of work at back-end servers, and LC
aims to balance the number of jobs at them.

There are many performance studies, which compare ex-
perimentally these and other assignment policies, but com-
monly, these studies preclude job preemption, i.e. assume
that jobs are executed sequentially, in FCFS order. In con-
trast, this paper studies the performance of JSQ and LC,
with and without job preemption at back-end servers. Our
choice is motivated by the fact that in practice, most, if
not all, back-end servers use preemption, i.e process jobs
concurrently (see Section 2 for further details). The study
shows that preemption affects dramatically the performance
of these policies. When preemption is precluded, then JSQ
outperforms LC as expected. However, when preemption
is allowed, then LC outperforms JSQ by a factor of two!
This is a surprising outcome in view of JSQ’s optimality.
Moreover, LC with preemption still outperforms JSQ with-
out preemption by a substantial margin. The last observa-
tion suggests that deploying LC with preemptive back-end
servers is not only a practical choice, but should also yield
better performance.

The results of the aforementioned study suggest that if
jobs can be preempted, balancing the number of jobs at
back-end servers is a better strategy than balancing the
amount of work there. On the face of it, this contention
appears to be counter-intuitive, because JSQ uses more in-
formation than LC. However, our results lend support to the
contention that this apparently more detailed information is
not as relevant as intuition would lead us to believe. We will
elaborate on this point in Section 3.

In this context, an interesting question is whether com-
bining the two strategies would improve even more the per-

formance of a cluster employing preemption. To answer
this question, we propose a new policy, called LC*, which
aims to balance the number of jobs at back-end servers in a
manner that avoids creating large disparities in the amount
of work at them. In a nutshell, LC* operates as follows: The
dispatcher uses a threshold parameter to classify incoming
jobs into short and long; short jobs are assigned to the least
connected back-end server, while long jobs are assigned to
a back-end server, not currently processing a long job. In
particular, if all back-end server-queues contain a long job,
then the assignment of an incoming long job is deferred un-
til a back-end server completes its large job.

The proposed LC* policy does not achieve perfect bal-
ancing of either the number of jobs or the amount of work.
However, we argue heuristically that LC* tends to give rise
to only relatively minor disparities (deviations from perfect
balance) in these metrics across back-end servers. First,
there are no large disparities in the amount of work, because
a back-end server queue may contain at most one large job
at any given time. Second, there are only minor disparities
in the number of jobs: at any given time, the maximal pos-
sible difference in the number of jobs assigned to any two
back-end server is 2. To see that, note that under LC, the
maximal possible difference is 1. However, because, LC*
does not require a large job to be assigned to the least con-
nected server, the maximal possible difference increases to
2, since only one large job may be processed by a back-end
server at any given time.

To gauge the performance of the LC* policy, we exer-
cised it on empirical data traces measured at Internet sites
serving the 1998 World Cup. We mention that Arlitt and
Jin [3] show that job sizes from these traces do indeed fol-
low a power-law distribution with � � ����. In particular,
for the trace considered files with sizes greater than 30KB,
make up less than 3% of the files requested, but account
for over 50% of the overall workload. We show that when
files in excess of 30 KB are classified as long, LC* out-
performs substantially both LC and JSQ. Thus, the study
demonstrates that the careful assignment of a small number
of jobs can have a profound impact on overall response time
performance. It is worth pointing out that this increase in
performance is achieved by using only information readily
available to the dispatcher. Consequently, LC* is a practical
policy with regard to implementation.

The rest of the paper is organized as follows. Section 2
presents the common back-end server architectures and ex-
amines how jobs are processed under various architectures.
Section 3 discusses the effects of preemption on the perfor-
mance of JSQ and LC by presenting a performance study
driven by World Cup data traces. Section 4 presents in de-
tail the LC* policy and illustrates its performance. Finally,
Section 5 concludes the paper.

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

2 Back-end Server Architectures

The most common architectures employed for back-end
servers are:

� MP (Multi-Process). In this architecture a back-
end server employs multiple processes; each process
serves a job to completion before accepting a new one.
A process runs for a predefined time interval (quan-
tum) or until it blocks, after which the operating sys-
tem selects another process to run.

� MT (Multi-Threaded). In this architecture, back-
end servers spawn multiple threads within a single ad-
dress space; each thread serves a job to completion
before accepting a new one. There are two main ap-
proaches to thread scheduling: preemptive and non-
preemptive [6]. In preemptive scheduling, a thread
may be suspended even when it is runnable, in which
case, another thread is chosen for execution. In non-
preemptive (coroutine) scheduling, a thread is allowed
to run to completion unless it blocks.

From this brief description it follows that MP back-end
servers can serve several jobs concurrently. The same holds
true for MT back-end servers employing preemptive thread
scheduling. The only practical case where it can be assumed
to a certain degree that jobs are executed in FCFS order is
when MT back-end servers use non-preemptive scheduling
for threads.

We mention that Apache, the Web server with the broad-
est installed base today [1, 11], comes in two flavors: the
MP architecture over UNIX, and the MT architecture over
Microsoft Windows. It should be noted that other types
of back-end server architectures exist, including single-
process event-driven (SPED) [19] and asymmetric multi-
process event-driven (AMPED) [14]. Both of these can
serve multiple jobs concurrently.

3 The Impact of Preemption on JSQ and LC

This section presents a simulation study driven by real-
life data traces, which shows that when back-end servers
admit preemption (i.e. jobs are executed concurrently), the
strategy of balancing the number of jobs at back-end servers
outperforms the strategy of balancing the amount of work.

To compare the performance of JSQ and LC, we simu-
lated a cluster of four back-end servers, driven by a World
Cup trace, described below. The experiments were subject
to the assumptions that communication times between the
dispatcher and back-end servers and the overhead incurred
by the dispatcher to select (job, server) pairs are negligible.

3.1 Simulation Data

Our study used trace data from Internet sites serv-
ing the 1998 World Cup. The data used are avail-
able on the Internet Traffic Archive (see [3] and
http://ita.ee.lbl.gov/html/traces.html). This repository pro-
vides detailed information about the 1.3 billion requests re-
ceived by World-Cup sites over 92 days – from April 26,
1998 to July 26, 1998. We mention again that Arlitt and
Jin [3] have shown that job sizes from these traces follow a
heavy-tail distribution.

From this repository, we selected a trace covering 1 hour
from June 26 data, containing approximately 6 million re-
quests. The relevant statistics of this trace are described
next. Figure 2(a) depicts the number of requests received
by the World-Cup cluster in successive one-second inter-
vals, while Figure 2 (b) plots the number of bytes requested
from the same cluster in successive one-second intervals.
To further underline the power-law distribution of job-sizes
we point out the following aspects of this trace:

� Approximately 75% of the files requested have sizes
of less than 2KB, which account for less than 12% of
the transferred data.

� Files with sizes greater than 30KB, which make up less
than 3% of the files requested, account for over 50%
of the overall workload. Even more striking, files in
excess of 100KB, which make up less than 0.04% of
all files requested, account for 7% of the transferred
data.

The selection of the particular data trace was motivated
by the fact that it exhibits arrival-rate fluctuations corre-
sponding to light, medium and heavy loadings in this tem-
poral order, as evidenced by Figure 2. More specifically,
the trace allows us to study policy performance under vari-
ous loading conditions, as follows:

� Light loading. In the time interval [0, 1200], the ar-
rival rate is relatively low (below 1600 requests/sec),
and the resultant utilization coefficient is also low (�
���).

� Medium loading. In the time interval (1200, 2400],
the arrival rate is between 1600 and 2000 requests/sec,
and the resultant utilization coefficient is intermediate.

� Heavy loading. In the time interval (2400, 3600], the
arrival rate exceeds 2000 requests/sec, and the corre-
sponding utilization coefficient is high (�75%).

From each trace record, we extracted only the request
arrival time and the size of the requested file. We men-
tion that the recorded time stamps are in integer seconds,
with arrivals on the order of several hundreds of requests

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

0 500 1000 1500 2000 2500 3000 3500 4000

nu
m

be
r

of
 r

eq
ue

st
s

time (in seconds)

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

0 500 1000 1500 2000 2500 3000 3500 4000

by
te

s

time (seconds)

(a) Number of request arrivals per second; (b) Total bytes requested per second

Figure 2. Empirical request statistics from a World Cup trace.

per second. Consequently, we have distributed request ar-
rivals uniformly over each second. Since no service time
information was recorded, the simulation estimates the ser-
vice time as the sum of the (constant) time to establish and
close a connection, and the (variable, size-dependent) time
required to retrieve and transfer a file. The justification for
this estimation method may be found in [13, 15, 17].

3.2 Simulation Experiments

The performance metric used to compare these assign-
ment policies is slowdown, defined as the ratio between a
job’s response time (the time interval from the moment a
job arrives at the dispatcher and up until it ends processing
at the corresponding back-end server) and its service time.

3.2.1 Job Processing Without Preemption

Figure 3 displays average slowdowns in successive one sec-
ond intervals for the two assignment policies considered,
under the assumption that jobs are not preempted (i.e., jobs
are executed sequentially in the order of their arrival at
back-end servers). The figure shows that JSQ outperforms
LC over all time intervals, and therefore, under all simulated
loading conditions.

3.2.2 Job Processing With Preemption

These experiments simulate MP back-end servers that
schedule jobs for execution in round-robin manner. Fig-
ure 4 displays average slowdowns in successive 60-second
intervals. Interestingly, under the MP-architecture, LC out-
performs JSQ over all time intervals. Moreover, the relative
advantage of LC over JSQ increases as the load increases.
For light loadings their performance is very close, but for
heavy loadings, LC outperforms JSQ by as much as a factor
of 3.

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000

a
ve

ra
g
e
 s

lo
w

d
o
w

n

time (min)

LC
JSQ

Figure 3. Successive average slowdowns of
LC and JSQ when jobs are processed without
preemption.

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000

a
ve

ra
g

e
 s

lo
w

d
o

w
n

time (min)

LC
JSQ

Figure 4. Successive average slowdowns of
LC and JSQ when jobs are processed with pre-
emption.

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

J1

J2 J3 J100

S1

S2

J2 J4 J100

S1

S2

J1 J3 J5 J99

(a)

(b)

...

...

...

Figure 5. Server queues under (a) JSQ, and
(b) LC.

These observations can be explained by the fact that per-
formance is primarily affected here by the number of jobs
contending for resources. To gain insight into this expla-
nation, consider the scenario, where a sequence of jobs,
��,� � �,����, arrives back-to-back at a cluster consisting of
two back-end servers, �� and �� (see Figure 5). Assume
that �� requires a service time of 100 s, while all others
require a service time of 1 s. Under JSQ, �� is assigned
the large job (��), while �� is assigned all other (small)
jobs. Accordingly, the amount of work is almost evenly
distributed among the two back-end servers, as illustrated
in Figure 5(a). If processes are scheduled for execution
in round-robin manner, for a quantum of 0.1 s, the average
slowdown incurred is � ���. To see why, note that the re-
sponse times for the small jobs are 90 s, 90.1 s, 90.2 s, ...,
100 s, and therefore their slowdown are 90, 90.1, 90.2, ...,
100. In contrast, the large job incurs a slowdown of only 1
since it is served in 100 s.

Under LC, �� is assigned the large job and 49 small
ones, while �� is assigned 50 small jobs. Accordingly,
the number of jobs is divided evenly among the two back-
end servers, as illustrated in Figure 5(b). Consequently, the
response times of small jobs assigned to �� are just 45 s,
45.1 s, 45.2 s,....,50 s. Small jobs assigned to �� have simi-
lar response times, while the response time of the large job
is 150 s, and therefore its slowdown is 1.5. Consequently,
the average slowdown incurred is �47, which is better by a
factor of 2 as compared to JSQ. Intuitively, the improvement
is due to the fact that LC arranges to double the throughput
of small jobs as compared to JSQ, and noting that the re-
sponse times of small jobs dominate the overall response
time.

This example leads us to contend that the larger the
variability in the number of jobs across server queues, the
poorer JSQ performs. This contention is borne out by the
experiments: JSQ performs far worst than LC for heavy
loadings (where the length of back-end server queues and
their variability tend to be large) than under light loading

average slowdown
policy no job preemption job preemption

JSQ 4.69 7.7
LC 5.58 3.53

Table 1. Comparative statistics for JSQ and
LC

(where the length of server queues and their variability tend
to be small).

We conclude this section by comparing the average per-
formance of JSQ and LC with and without preemption, over
the simulation time horizon (see Table 1). We make three
observations from this data. First, JSQ yields better perfor-
mance without preemption than with preemption. Second,
LC’s behavior is opposite, namely, it yields better perfor-
mance with preemption than without preemption. Finally,
LC with preemption outperforms JSQ without preemption.

4 The LC* Policy

The experiments and the example presented in the pre-
vious section support the contention that aiming to balance
the number of jobs assigned to back-end servers is more im-
portant than balancing the amount of work there. We shall
now proceed to demonstrate experimentally that response-
time performance may be further improved if balancing the
number of jobs is combined with balancing the amount of
work.

To support this contention, consider the following moti-
vating example. Suppose that two large jobs and two small
jobs arrive back-to-back at a cluster consisting of two back-
end servers. Then, under LC, there are two possible as-
signments of these jobs. The first assigns a large job and a
small job to each back-end server, while the second assigns
the two large jobs to one back-end server and the two small
ones to the other. Note that the first assignment balances
the amount of work, while the second does not. To quantify
how this disparity affects performance, assume that the ser-
vice times of large and small jobs are 100 s and 1 s, respec-
tively. Then the response time of each large job under the
first assignment is �100 s, while under the second assign-
ment, it is �200 s! This outcome is due to the large dispar-
ity of workload across back-end servers under the second
assignment.

This example suggests that balancing both the number of
jobs and the amount of work may lead to improved perfor-
mance. It further suggests that assigning multiple large jobs
to the same back-end server exacts a large response-time
penalty, and therefore such assignments should be avoided.
These observations motivate our LC* policy, defined as fol-

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

lows.

1. The dispatcher classifies incoming jobs into
long or short relative to a cutoff parameter
c.

2. The dispatcher assigns short jobs to the
least connected back-end server.

3. The dispatcher assigns a large job to a back-
end server whose queue does not already
contain a large job. If there is no such back-
end server, the dispatcher defers the assign-
ment until a back-end server completes its
large job.

We draw the reader’s attention to the following points.
First, the classification into long and short jobs is based on
the size of requested documents. Although job service time
is a more relevant classification metric pro forma, we never-
theless chose size, because the dispatcher has this type of in-
formation readily available. Furthermore, it has been shown
that the time to service a request is well-approximated by
the size of the requested file [10].

Secondly, the dispatcher can estimate job size only for
static requests (dynamic files are created on the fly by the
server in response to a request). Consequently, LC* implic-
itly treats dynamic requests as short. Even though this clas-
sification may be inaccurate for certain dynamic requests,
we argue that the errors incurred do not affect substan-
tially LC*’s performance. This is because evidence sug-
gests that while the number of dynamic requests is grow-
ing, the majority of the requests at most web servers are
static [2, 10, 12]. For example, it was shown in [3] that for
World Cup traces only 0.02% of requests were for dynamic
files.

Finally, LC* is practical to implement in that the extra
information required is readily available to the dispatcher,
and the processing of this information is quite fast.

We next proceed to demonstrate experimentally, via a
case study, that LC* outperforms both JSQ and LC. The
study simulates a cluster of four MP back-end servers that
process the jobs recorded by the trace of Section 3.1. The
simulation sets the value of the cutoff parameter to 30K (i.e.,
under LC*, a request for a file whose size is at least 30K is
classified as a large job). Recall that for the trace considered
files with with sizes greater than 30KB, which make up less
than 3% of the files requested, account for over 50% of the
overall workload.

Figure 6 displays average slowdowns of LC and LC* in
successive 60-second intervals. Table 2 displays slowdown
averages under various loading regimes (light, medium and
heavy), as well as the overall time horizon.

We next proceed to compare the average slowdowns of
LC to those of LC*:

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000

a
ve

ra
g
e
 s

lo
w

d
o
w

n

time (min)

LC
LC*

Figure 6. Successive average slowdowns for
LC and LC*.

� Light loading. The average slowdowns of both poli-
cies in the lightly-loaded interval [0, 1200] is very
close to 1, meaning that jobs are served almost without
delay. These statistics are due to the fact that when the
arrival rate is low, a job is predominantly assigned to
an idle back-end server.

� Medium loading. As the arrival rate and subsequent
utilization increase in the interval [1200,2400], LC*
slightly outperforms LC. This is due to the fact that
LC* has only few occasions to make better assign-
ments than LC.

� Heavy loading. As the loadings becomes heavy in the
interval [2400, 3600], LC* outperforms LC by almost
a factor of 2. Moreover, there are periods during which
LC* outperforms LC by as much as a factor of 4! (See,
for example, the terminal period.) This behavior is due
to the fact that under heavy loadings LC* has many
occasions to make better assignments than LC.

We conclude this section with the following observa-
tions. First, LC* outperforms JSQ with and without pre-
emption by a factor of 3 and 2, respectively (see Ta-
bles 1 and 2). Second, LC* dramatically outperforms LC
under heavy loading regimes, while under light and medium
regimes their performance is similar. This observation sug-
gests that the dispatcher should employ an adaptive policy:
it should use LC in light traffic, and switch to LC* in heavy
traffic. Thus, under such an adaptive policy, the overhead
attendant to LC* is incurred only when it gives rise to sub-
stantially improved performance.

5 Conclusion

Several conclusions can be drawn from the studies pre-
sented in this paper. First, the back-end server architecture

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

average slowdown
policy light loading medium loading heavy loading overall

LC 1.06 1.90 6.17 3.53
LC* 1.06 1.59 3.22 2.16

Table 2. Comparative statistics for LC and LC*

affects profoundly the performance of a policy. Specifically,
the paper shows experimentally that the performance of JSQ
is far better when preemption is precluded than when it is
supported.

The second conclusion is that if jobs can be preempted,
balancing the number of jobs at back-end servers is a better
strategy than balancing the amount of work there. In partic-
ular, the paper shows experimentally that LC, which uses
the former strategy, performs far better than JSQ, which
uses the latter strategy.

Finally, the study supports the contention that combin-
ing the two balancing strategies yields performance supe-
rior to that of each constituent strategy. Specifically, the pa-
per proposes a policy, LC*, which improves over both LC
and JSQ. A notable feature of the proposed policy is that it
has only modest informational and computational require-
ments, which renders it a practical candidate for real-life
implementation.

Acknowledgments

This work was supported in part by the Center for Supply
Chain Management at Rutgers University and by DIMACS
under the contract STC-91-19999.

References

[1] “The Apache HtextrmP Server Project”.
http://httpd.apache.org/

[2] Arlitt, M., Friedrich, R. and Jin, T. Workload Charac-
terization of a Web proxy in a cable modem environ-
ment. ACM Performance Evaluation Review, 27(2),
25-36, 1999.

[3] Arlitt, M. and T. Jin. “Workload Characterization of
the 1998 World Cup Web Site,” IEEE Network, 14(3),
30-37, May/June 2000. Extended version: Tech Re-
port HPL-1999-35R1, Hewlett-Packard Laboratories,
September 1999.

[4] Bruckner, P. Scheduling Algorithms, Third Edition,
Springer-Verlag, 2001.

[5] Cardellini, V., E. Casalicchio, M. Colajanni and P. S.
Yu. ”The state of the art in locally distributed Web-
server systems”, ACM Computing Surveys, 34(2):263-
311, 2002.

[6] Coulouris, G., J. Dollimore and T. Kindberg. “Dis-
tributed Systems - Concepts and Design”, (3rd edi-
tion), Addison-Wesley, 2001.

[7] Crovella, M.E., M.S. Taqqu and A. Bestavros.
“Heavy-tailed Probability Distributions in the World
Wide Web,” In A Practical Guide To Heavy Tails,
Chapman Hall, New York, 3–26, 1998.

[8] Faloutsos, M., P. Faloutsos and C. Faloutsos. “On
Power-Law Relationships of the Internet Topology,”
In Proceedings of ACM SIGCOMM ’99, 251-262,
Aug. 1999.

[9] Harchol-Balter, M. “Task Assignment with Unknown
Duration,” Journal of the ACM, Vol. 49, No. 2, 260-
288, March 2002.

[10] Harchol-Balter M., B. Schroeder, N. Bansal, M.
Agrawal. “Size-based Scheduling to Improve Web
Performance.” ACM Transactions on Computer Sys-
tems, 21(2), May 2003.

[11] Hu, Y., A. Nanda and Q. Yang. “Measurement, Analy-
sis and Performance Improvement of the Apache Web
Server”, in The International Journal of Computers
and Their Applications, 8(4),217-231, 2001.

[12] Krishnamurthy, B. and Rexford, J. Web Protocols
and Practice : HtextrmP 1.1, Networking Protocols,
Caching, and Traffic Measurement. Addison-Wesley,
2001.

[13] Pai, V.S., M. Aron, G. Banga, M. Svendsen, P. Dr-
uschel, W. Zwaenepoel and E. Nahum. “Locality-
aware Request Distribution in Cluster-based Net-
work Servers”, in the Proceedings of the Eighth
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS-VIII), 1998.

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

[14] Pai, V.S., P. Druschel and W. Zwaenepoel. ”Flash: An
Efficient and Portable Web Server”, In the Proceed-
ings of the USENIX 1999 Annual Technical Confer-
ence, 1999.

[15] Riska, A., W. Sun, E. Smirni and G. Ciardo. “Adapt-
Load: Effective Balancing in Clustered Web Servers
Under Transient Load Conditions,” in 22nd Interna-
tional Conference on Distributed Computing Systems
(ICDCS’02), 2002.

[16] Pinedo, M. Scheduling: Theory, Algorithms, and Sys-
tems, Prentice Hall, 2002.

[17] Teo Y.M. and R. Ayani, “Comparison of Load Bal-
ancing Strategies on Cluster-based Web Servers”, In
Simulation, The Journal of the Society for Model-
ing and Simulation International, 77(5-6), 185-195,
November-December 2001.

[18] Winston, W. “Optimality of the Shortest Line Disci-
pline,” Journal of Applied Probability, 14, 181–189,
1977.

[19] Zeus Technology. “Zeus Web Server”.
http://www.zeus.com/serve/.

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

	footer1:

