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ABSTRACT
A cluster-based server consists of a front-end dispatcher and
several back-end servers. The dispatcher receives incoming
requests, and then assigns them to back-end servers for pro-
cessing. Our goal is to devise an assignment policy that
has good response time performance, and is practical to
implement in that the amount of information used by the
dispatcher is relatively small, so that the attendant compu-
tation and communication overheads are low. In contrast
to extant assignment policies that apply the same assign-
ment policy to all incoming jobs, our approach calls for the
dispatcher to classify incoming jobs as long or short, and
then use class-dependent assignment policies. Specifically,
we propose a policy, called CDA (Class Dependent Assign-
ment), where short jobs are assigned in Round-Robin man-
ner as soon as they arrive, while long jobs are deferred and
assigned only when a back-end server becomes idle. Fur-
thermore, when processing a long job, a back-end server is
not assigned any other jobs.

Our approach is motivated by empirical evidence suggest-
ing that the sizes of files traveling on the Internet follow
power-law distributions, where long jobs constituting a small
fraction of all incoming jobs actually account for a large frac-
tion of the overall load. To gauge the performance of the pro-
posed policy, we exercised it on empirical data traces mea-
sured at Internet sites serving the 1998 World Cup. Since
the assignment of long jobs incurs computational overhead
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as well as extra communication overhead, we studied the
performance of CDA as function of the fraction of jobs clas-
sified as long. Our study shows that classification of even
a small fraction of jobs as long can have a profound impact
on overall response time performance. More specifically, our
experimental results show that if less than 3% of the jobs are
classified as long, then CDA outperforms traditional policies,
such as Round-Robin, by two orders of magnitude. From an
implementation viewpoint, these results support our con-
tention that CDA-based assignment is a practical policy com-
bining low overhead and greatly improved performance.

Keywords
cluster-based server, assignment policy, power-law distribu-
tion, simulation

1. INTRODUCTION
Web servers are becoming increasingly critical as the In-

ternet assumes an ever more central role in the telecom-
munications infrastructure. The satisfactory execution of
common business applications (e.g., Web, multimedia and
e-commerce activities, to name a few) depends on the ef-
ficient performance of Web servers. In particular, from a
customer standpoint, a key Quality of Service (QoS) perfor-
mance metric is response time. To improve service response
times, it is necessary to take into consideration server archi-
tecture and Internet traffic loads.

In this paper we consider a cluster-based architecture for
Web servers that combines good performance and low cost.
A cluster-based server consists of a front-end dispatcher and
several back-end servers (see Figure 1). The dispatcher re-
ceives incoming requests, and then decides how to assign
them to back-end servers, which in turn serve the requests
according to some discipline.

A number of dispatcher assignment policies have been pro-
posed for this type of architecture, the most well-known of
which are briefly described below. The Round-Robin pol-
icy assigns jobs to back-end servers in a cyclical manner,
namely, the i-th job is assigned to server i mod n, where n
is the number of back-end servers in the cluster. The JSQ

(Join Shortest Queue) policy assigns each incoming job to
the back-end server with the smallest amount of residual
work. Finally, Size-Range policies are based on the ob-
servation that when “short” jobs are stuck behind “long”
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Figure 1: A cluster-based server

ones, then response time performance can degrade severely.
Such policies avoid the pitfalls stemming from disparate job
sizes at a given back-end server by assigning any back-end
server only jobs of similar sizes. It has been shown that the
response time performance of JSQ and Size-Range can be
several orders of magnitude better than Round-Robin and its
variants [10, 23]. However, the former are rarely, if at all,
used in practice [15, 23] because they require the dispatcher
to estimate the sizes of all incoming jobs and to know the
status of back-end servers, thus incurring computation and
communication overheads.

Our goal is to devise an assignment policy that has good
response time performance and is practical to implement
in that the amount of information used by the dispatcher
is relatively small, so that the attendant computation and
communication overheads are low. In contrast to extant
assignment policies that apply the same assignment policy
to all incoming jobs, our approach calls for the dispatcher
to classify incoming jobs as long or short, and then use
class-dependent assignment policies. Specifically, we pro-
pose a policy, called CDA (Class Dependent Assignment),
where the dispatcher assigns short jobs as soon as they ar-
rive in Round-Robin manner, while long jobs are assigned to
back-end servers only when the servers become idle. More-
over, while a back-end server processes a long job, it will not
be assigned any other jobs.

We argue that CDA achieves low response times for several
reasons. First, CDA reduces the variance of job sizes at a
given back-end server by assigning to it either long or short
jobs, but not both, at any given time. Thus, it eliminates
the problem of short jobs getting “stuck” behind long ones.
Secondly, by deferring the assignment of long jobs, CDA effec-
tively gives priority to short jobs. Finally, the assignment
overhead in CDA is low, because the dispatcher need only
estimate the size of long jobs and need only know when
back-end servers become idle.

The size-dependent behavior of CDA is motivated by em-
pirical evidence suggesting that the sizes of files traveling on
the Internet follow power-law distributions [7, 2, 8] of the
form

IP[X > x] ∼ c

xα
,

where X is the random file size, c > 0 and 1 ≤ α ≤ 2. In
power-law job-size distributions, a relatively small fraction
of jobs accounts for a relatively large fraction of the overall
load.

To gauge the performance of the CDA policy, we exercised
it on empirical data traces measured at Internet sites serv-
ing the 1998 World Cup. We mention that Arlitt and Jin [2]

shows that job sizes from these traces do indeed follow a
power-law distribution with α = 1.37. Moreover, for the
traces considered in our experiments, less than 3% of the
jobs account for more than 50% of the overall workload.
Since the assignment of long jobs incurs more computa-
tional overhead as well as extra communication overhead,
we studied the performance of CDA as function of the frac-
tion of jobs classified as long. Our study demonstrates that
the classification of even a small fraction of jobs as long
can have a profound impact on overall response time per-
formance. More specifically, our experimental results show
that if less than 3% of the jobs are classified as long, then
CDA outperforms Round-Robin by two orders of magnitude.
Furthermore, for the same fraction of long jobs, CDA yields
response time metrics similar to JSQ. From an implemen-
tation viewpoint, these results support our contention that
CDA is a practical policy combining low overhead and good
response time performance.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 discusses the CDA policy
and Section 4 provides a detailed performance analysis for
it. Finally, Section 5 concludes the paper.

2. PREVIOUS WORK
The literature contains a considerable body of work on

job scheduling (see [3, 4, 6, 14, 17, 18, 20] and references
therein). Most of the analytical models assume that ar-
rivals and service times follow exponential-type distribu-
tions. Smith [22] considers scheduling with fixed-size (de-
terministic) jobs on a single server. The paper shows that
in this case, scheduling the shortest jobs first is optimal in
that the algorithm yields minimal response times. In a sim-
ilar vein, Rothkopf [21] shows that this algorithm yields
minimal expected response times for job sizes having ar-
bitrary (known) distributions. Winston [25] considered a
cluster-based server with the first-come first-serve (FCFS)
discipline at each server queue, exponential job-size distri-
butions, and Poisson arrivals. The paper proves that under
these assumptions, the JSQ policy is optimal (yields minimal
expected response times). However, Whitt [24] showed that
there exist other job-size distributions for which JSQ is not
optimal.

Next we proceed with a review of Size-Range schedul-
ing policies, which consider job sizes that follow a power-
law distribution. Harchol-Balter et al. [10] introduce a pol-
icy called “Size Interval Task Assignment with Equal Load”
(SITA-E). The SITA-E policy fits job-size ranges (intervals)
to bounded-Pareto distributions, and then equalizes the ex-
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pected work. That is, given n back-end servers, then n size
ranges are determined off-line, such that each range contains
approximately the same amount of work. Under certain
job-size variance assumptions, they show that SITA-E out-
performs JSQ [10]. Ciardo et al. [5] presents a load-balancing
algorithm, called EquiLoad, similar to SITE-E in that it also
uses predefined ranges. The paper shows that EquiLoad per-
forms well on World Cup data traces. We mention that the
main drawback of SITA-E and EquiLoad is that they assume
a priori knowledge of the job-size distribution. Another al-
gorithm, called AdaptLoad, is proposed in [19] as an adap-
tive, on-line version of EquiLoad. Again, AdaptLoad assigns
each back-end server to a job-size range, but these ranges
are continually re-evaluated based on the most recent history
window of requested jobs. The paper shows empirically that
for World Cup data traces, AdaptLoad performs similarly to
JSQ.

3. THE CDA POLICY
Under the CDA policy, the dispatcher has a cutoff point

parameter for classifying arriving jobs as long or short. De-
noting by CDA(c) the CDA policy with cutoff c, following are
its rules of operation.

1. The dispatcher classifies incoming jobs into
long or short relative to c.

2. The dispatcher assigns short jobs in Round-
Robin manner as soon as they arrive. Back-
end servers process jobs in their queues in
the order of their arrival.

3. The dispatcher does not assign long jobs as
soon as they arrive, but rather, holds them
in its queue. When a back-end server be-
comes idle, the dispatcher assigns it the job
with the shortest estimated size in its buffer.
While the back-end server processes a long
request, it will not be assigned any other
jobs.

We draw the reader’s attention to the following points.
First, the classification into long and short jobs is based on
the size of requested documents. Although job service time
is a more relevant classification metric pro forma, we never-
theless chose size, because the dispatcher has this type of in-
formation readily available. Furthermore, it has been shown
that the time to service a request is well-approximated by
the size of the requested file [11].

Secondly, the dispatcher can estimate job size only for
static requests (dynamic files are created on the fly by the
server in response to a request). Consequently, CDA implic-
itly treats dynamic requests as short. Even though this clas-
sification may be inaccurate for certain dynamic requests,
the errors incurred do not affect substantially CDA perfor-
mance. This is because evidence suggests that while the
number of dynamic requests is growing, the majority of the
requests at most web servers are static [1, 11, 13]. For ex-
ample, it was shown in [2] that for World Cup traces only
0.02% of requests were for dynamic files.

Thirdly, to prevent starvation of large jobs, the dispatcher
periodically updates estimated sizes of jobs in its queue. In
essence, the estimated size of a job decreases with the time
it has waited in the dispatcher queue. Consequently, even
large jobs will eventually appear to the dispatcher as having

small sizes, and thus accelerate their selection for assign-
ment. This feature is implemented as follows: the dispatcher
records for each job the time it has last updated its size. If
the time since the last update exceeds a predefined interval
Tu, then the estimated size is divided by a predefined factor
Fu. (A long job is assigned to a back-end server either when
it becomes the shortest long job in the buffer, or when its es-
timated size falls below c. In either case, while the back-end
server processes the request no other jobs will be assigned to
it.) The values for Tu and Fu used in the experimental study
(presented in Section 4.2) are respectively, 100 ms and 2.
(In effect, by using these values, the estimated size of a file
is reduced by a factor of 1000 in 1s, and thus even very large
files are not delayed too long.)

Finally, CDA requires the dispatcher to know when back-
end servers become idle. The dispatcher can infer this type
of information by monitoring its number of active connec-
tions to back-end servers. (The dispatcher is responsible for
passing incoming data pertaining to a job from a client to a
back-end server. So for each job in progress at a back-end
server there is an open connection between the dispatcher
and that server [15, 23].)

4. EXPERIMENTAL PERFORMANCE STUDY
We demonstrate the good performance of CDA by running

a simulation driven by trace data from Internet sites serving
the 1998 World-Cup. The data used was archived in an In-
ternet repository (see [2] and http://ita.ee.lbl.gov/html/traces.html).

4.1 Simulation Data
The aforementioned repository provides detailed informa-

tion about the 1.3 billion requests received by World-Cup
sites over 92 days – from April 26, 1998 to July 26, 1998.
We mention again that Arlitt and Jin [2] have shown that
job sizes from World Cup traces follow a power-law distri-
bution with α = 1.37.

From these data, we selected a trace covering approxi-
mately 40 minutes from June 26, and containing over 3.5
million requests. Figure 2(a) depicts the number of requests
received by the World Cup cluster in one-second intervals.
The long tail exhibited by the data can be discerned in Fig-
ure 2(b), which depicts the number of requests made for se-
lected file sizes in the trace considered (note the logarithmic
scale on the y axis). It is worth pointing out the following
aspects of the aforementioned trace.

• Approximately 75% of the files requested have sizes of
less than 2KB, which account for less than 12% of the
transferred data.

• Files with sizes greater than 30KB, which make up less
than 3% of the files requested, account for over 50%
of the overall workload. Even more striking, files in
excess of 100KB, which make up less than 0.04% of
all files requested, account for 7% of the transferred
data.

From each trace record, we extracted only the request ar-
rival time and the size of the requested file. We mention
that the recorded time stamps are in integer seconds, with
arrivals on the order of several hundreds of requests per sec-
ond. Consequently, we have distributed request arrivals uni-
formly over each second. Since no information was recorded
regarding service times, our simulation estimates these times
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Figure 2: Empirical request statistics from a World Cup trace.

as the sum of the (constant) time to establish and close a
connection, and the (variable, size-dependent) time required
to retrieve and transfer a file. The values used for these pa-
rameters have been determined experimentally in [15, 23],
and are as follows: the constant time to make a connection
is set at 0.9 ms, and the transmission and processing time
is set at 80µs/KB.

4.2 Simulation Experiments
The simulation study models a cluster with four MT (multi-

threaded) back-end servers. In an MT back-end server, a
thread performs all steps associated with a request before
accepting a new one. The simulation uses non-preemptive
(coroutine) scheduling for threads, where a thread is allowed
to run until it finishes or blocks. The study makes the follow-
ing standard, simplifying assumptions: (1) communication
times between the dispatcher and back-end servers are neg-
ligible, and (2) the overhead incurred by the dispatcher to
select (job, server) pairs is negligible.

The policies compared are CDA, Round-Robin and JSQ. We
excluded from the study Size-Range policies, because it was
shown in [19] that their performance is similar to the JSQ

policy for the trace used. In order to evaluate the relative
efficacy of these policies, we compared their performance
with respect to waiting time, defined as the time interval
from the moment a request arrives at the dispatcher and
up until it starts processing at the corresponding back-end
server.

Figure 3 displays the average waiting time yielded by
these policies for cutoff points, c, varying between 10KB and
500KB. The Figure shows that CDA improves over Round-Robin
by a factor of four, even for a cutoff point of 500KB, for
which long files account for less than 0.02% of the total
number of requests. Moreover, this improvement increases
greatly for smaller values of c. For example, for c = 30K
(less than 3% of requested files are classified as long), the
average waiting time of CDA is 6.6µs—two orders of magni-
tude lower than Round-Robin, whose average waiting time
is 826µs. On the other hand, JSQ is the best performer over
all cutoff points, but is comparable to CDA for small values of
c — the average waiting time of JSQ is 2.68µs as compared
with 6.6µs for CDA(30).

The results clearly show the trade-off between performance

and the amount of information used by the dispatcher (with
the attendant computational and communication overhead).
Indeed, the Round-Robin policy (where the dispatcher does
not use service time or size information) performs by far
the worst. In contrast, JSQ yields the best performance, but
requires the dispatcher to know the status of all back-end
servers at all times. Finally, CDA is in-between Round-Robin

and JSQ, both in terms of waiting time performance and the
amount of information required by the dispatcher. Specifi-
cally, CDA requires the dispatcher to know the sizes of just
a fraction of the files, and the status of back-end servers
in a limited number of cases. Furthermore, CDA enjoys the
flexibility of trading performance for information through a
choice of the cutoff point value, c.

Figure 4 displays the average waiting time of JSQ and
CDA(30) over successive 10-second intervals spanning the en-
tire simulation time horizon. The results for the Round-Robin
policy are not plotted, because it is substantially outper-
formed by the other two policies. The results show that
CDA’s performance is remarkably close to that of JSQ. This
performance is all the more remarkable in view of CDA’s mod-
est informational requirements: it requires only long file in-
formation, while JSQ requires information on all files. In
fact, CDA is designed to take advantage of power-law work-
load distributions. To wit, recall that 3% of requests are for
long files, which account for more than 50% of total trans-
ferred data. We conclude by pointing out that the results
above ignore the communication overhead incurred by JSQ

in order to determine the status of back-end servers. Con-
sequently, we expect the actual performance of CDA relative
to JSQ to be even better.

5. CONCLUSION
In this paper, we propose a novel approach to the job as-

signment problem in cluster-based servers, called CDA. In
contrast to extant policies that use the same assignment
method for all incoming jobs, our approach calls for the dis-
patcher to classify incoming jobs as long or short, and then
use class-dependent assignment policies. The experimental
study shows that CDA performs far better than Round-Robin.
Furthermore, CDA performs similarly to JSQ even though the
former requires considerably less information than the latter,
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and incurs less communication overhead. All things consid-
ered, it is possible that when communication overhead is
taken into account, CDA would perform better than JSQ.
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