
Cluster Computing 9, 57–65, 2006
C© 2006 Springer Science + Business Media, Inc. Manufactured in The United States.

Deferred Assignment Scheduling in Cluster-Based Servers

VICTORIA UNGUREANU
DIMACS Center, 96 Frelinghuysen Road, Piscataway, NJ 08854

BENJAMIN MELAMED
Department of MSIS, Rutgers University, 94 Rockafeller Rd., Piscataway, NJ 08854

MICHAEL KATEHAKIS
Department of MSIS, Rutgers University, 180 University Ave., Newark, NJ 07102

PHILLIP G. BRADFORD
Department of Computer Science, The University of Alabama, Box 870290, Tuscaloosa, AL 35487-0290

Abstract. This paper proposes a new scheduling policy for cluster-based servers called DAS (Deferred Assignment Scheduling). The main

idea in DAS is to defer scheduling as much as possible in order to make better use of the accumulated information on job sizes. In broad

outline, DAS operates as follows: (1) incoming jobs are held by the dispatcher in a buffer; (2) the dispatcher monitors the number of jobs

being processed by each server; (3) when the number of jobs at a server queue drops below a prescribed threshold, the dispatcher sends to

it the shortest job in its buffer.

To gauge the efficacy of DAS, the paper presents simulation studies, using various data traces. The studies collected response times and

slowdowns for two cluster configurations under multi-threaded and multi-process back-end server architectures. The experimental results

show that in both architectures, DAS outperforms the Round-Robin policy in all traffic regimes, and the JSQ (Join Shortest Queue) policy

in medium and heavy traffic regimes.

Keywords: clustered servers, deferred assignment, heavy-tail distribution, scheduling, simulation

1. Introduction

Web servers are becoming increasingly critical as the Internet
assumes an ever more central role in the telecommunications
infrastructure. The proper operation of business-related ap-
plications (e.g., Web, multimedia and e-commerce activities,
to name a few) depends on the efficient performance of Web
servers. Applications that handle heavy loads commonly use
cluster-based architectures for Web servers, which combine
good performance and low cost.

A cluster-based server consists of a front-end dispatcher
and several back-end servers (see figure 1). The dispatcher
receives incoming requests and then decides how to assign
them to back-end servers, which in turn serve the requests ac-
cording to some discipline. The dispatcher is also responsible
for passing incoming data pertaining to a job from a client to a
back-end server, so that, for each job in progress at a back-end
server there is an open connection between the dispatcher and
that server [17,23].

A number of dispatcher assignment policies have been pro-
posed for this type of architecture (see Section 5), but to the
best of our knowledge, all these policies make the assump-
tion that the dispatcher sends requests to back-end processors
immediately upon job arrival. In contrast, our approach calls
for deferred assignment rather than immediate assignment.
By deferred assignment we simply mean that the (front-end)
dispatcher defers the assignment of jobs to (back-end) servers,

rather than assign them immediately upon their arrival. The
rationale for the deferred assignment approach is straightfor-
ward: Judicious assignment deferral enables the dispatcher
to make better assignment decisions, resulting in greatly im-
proved performance, especially in heavy traffic regimes.

To this end, we propose a policy, called DAS (Deferred
Assignment Scheduling), which in broad outline operates as
follows: (1) incoming jobs are held by the dispatcher in a
buffer; (2) the dispatcher monitors the number of jobs being
processed by each server; (3) when the number of jobs at
a server queue drops below a prescribed threshold, the dis-
patcher sends to it the shortest job in its buffer. We argue that
DAS has several important merits:� good performance, especially under traffic surges� amenability to practical implementation� resistance to denial-of-service attacks

We now proceed to discuss the merits of DAS in some detail.
First, the good performance of DAS is supported by exper-

imental results, using several data traces. The experimental
studies collected response times and slowdowns under both
multi-threaded and multi-process back-end server architec-
tures. The experimental results show that in both architec-
tures, DAS outperforms the Round-Robin policy in all traf-
fic regimes, and the JSQ (Join Shortest Queue) policy under
medium and heavy traffic regimes. The latter is a significant

58 UNGUREANU ET AL.

Figure 1. A cluster-based Web server.

result, since it has been proven that JSQ has optimal response-
time statistics when the dispatcher uses immediate assign-
ment, and job arrival and sizes follow certain distributions [25]
(we will revisit this result in Section 5).

Secondly, DAS is amenable to practical implementation in
that the amount of information used by the dispatcher is rel-
atively small, so that the attendant computation and commu-
nication overheads are low. More specifically, the dispatcher
need only estimate the size of jobs and need only know when
the number of jobs currently processed by a back-end server
drops below a prescribed threshold. Indeed, job sizes in com-
mon Web applications can be easily estimated from the size
of the document requested. Furthermore, the dispatcher can
be explicitly notified by servers when their workload drops
below the threshold, or alternatively, the dispatcher can infer
this type of information by monitoring its number of active
connections to back-end servers.

Finally, DAS can better resist denial-of-service attacks, be-
cause when the dispatcher identifies suspect arrival patterns, it
can take countermeasures, such as discarding suspicious jobs.
Since the dispatcher keeps and defers jobs, these measures can
be taken before jobs are assigned to back-end servers, and thus
before malicious jobs consume back-end server resources.

The rest of the paper is organized as follows. Section 2 dis-
cusses the DAS policy, and Section 3 introduces a motivational
example. Section 4 presents several comparative performance
studies for DAS, Round-Robin and JSQ, based on simulations
driven by two data traces. Section 5 presents related work in
the literature and Section 6 concludes the paper.

2. The DAS policy

The DAS policy implements the deferred assignment principle,
which is based on the premise that superior scheduling may be
achieved by allowing the dispatcher to defer the assignment of
incoming jobs to back-end servers. Under DAS, the dispatcher
has a threshold parameter, θ , for deciding when to assign a
job to a back-end server. The DAS policy with threshold θ , is
denoted by DAS(θ) and has the following rules of operation.

1. The dispatcher keeps incoming jobs in a buffer and mon-
itors the number of requests processed by each server.

2. When the number of jobs processed by a back-end server,
S, drops below θ , the dispatcher assigns to S the job with
the shortest estimated size in its buffer (if the buffer is not
empty).

3. If the dispatcher buffer is empty when a back-end server
drops below θ , then that server is entered by the dispatcher

in a queue. If the queue is not empty when a new job ar-
rives, the dispatcher immediately assigns the job in ques-
tion to the back-end server at the head of the queue.

We draw the reader’s attention to the following points.
First, the dispatcher estimates job sizes based on the size
of requested files. Although job service time is a more rel-
evant metric pro forma, we nevertheless chose size, because
the dispatcher has this type of information readily available.
Furthermore, it has been shown that the time to service a
request is well-approximated by the size of the requested
file [11].

Secondly, to prevent starvation of large jobs, the dispatcher
periodically updates the estimated sizes of jobs in its queue.
In essence, the estimated size of a job decreases with the
time it has waited in the dispatcher queue. Consequently, even
large jobs will eventually appear to the dispatcher as having
small sizes, and thus accelerate their selection for assignment.
This feature is implemented as follows: the dispatcher records
for each job the time it has last updated its size. If the time
since last update exceeds a predefined interval Tu, then the
estimated size is divided by a factor Fu. The values for Tu and
Fu used in the experimental study (presented in Section 4) are
respectively, 100 ms and 2. In effect, by using these values,
the estimated size of a file is reduced by a factor of 1000 in
1s, and thus even very large files are not penalized too long.

Finally, we point out that the choice of the threshold value,
θ , is a compromise reconciling two opposing goals. On one
hand, one wishes to defer assignment as much as possible, thus
affording the dispatcher the opportunity of making a better
assignment decision by choosing from a larger pool of jobs.
On the other hand, one should avoid keeping back-end servers
idle while jobs are awaiting processing at the dispatcher. In
summary, the first goal calls for a small threshold, and the
second for a large one.

We next proceed to illustrate the efficacy ofDAS by compar-
ing its performance to various policies in two settings. First we
present in Section 3 a brief motivational example, and then we
show in Section 4 the results of several experimental studies
driven by two data traces.

3. A motivational example

In this example, we compare DAS with the following policies:

1. Round-Robin: Jobs are assigned to back-end servers
1, 2, . . . , n in a cyclical manner, namely, the i-th task is
assigned to server i mod n + 1. This policy equalizes the
number of jobs assigned to each server.

2. Size-Range: Each host serves jobs whose service
demands fall in a particular service-time range. This type
of policy attempts to keep small jobs from getting stuck
behind large ones. Examples of this type of policy include
SITA-E [10], EquiLoad [4], and AdaptLoad [19].

3. Join Shortest Queue (JSQ): Each incoming job is
assigned to the back-end server with the smallest amount
of residual work, i.e., the sum of service demands of all

DEFERRED ASSIGNMENT SCHEDULING IN CLUSTER-BASED SERVERS 59

Figure 2. A motivational example.

jobs in the server queue plus the residual work of the jobs
currently being served.

In order to evaluate the relative efficacy of these policies,
we compared their performance with respect to response time,
defined as the time interval from the moment a request ar-
rives at the dispatcher and up until it ends processing at the
corresponding back-end server. Specifically, we computed
the average response time yielded by Round-Robin, JSQ,
Size-Range and DAS, for the sequence of jobs presented in
figure 2, served by a cluster of two back-end servers.

In summary, the performance results are as follows.
Round-Robin, JSQ and Size-Range, which use immediate
assignment, yield average response times in excess of 20 ms.
In contrast, DAS, which uses deferred assignment, performs
far better, yielding an average response time of only 5 ms!
This exceptionally low average response time is attained, be-
cause the dispatcher defers the long job J3, assigning with
priority small jobs, which affords them the opportunity to
be processed faster. In contrast, under Round-Robin, JSQ
and Size-Range, job J3 is assigned immediately, and conse-
quently delays the processing of all short jobs arriving after
it.

We show now how the response time values are computed.
The computation makes the following simplifying assump-
tions: (1) communication times between the dispatcher and
back-end servers are negligible, (2) the overhead incurred by
the dispatcher to select (job, server) pairs is negligible, and (3)
jobs are processed in first come, first served order. (We point
out that the simulation studies presented in Section 4 do not
make this last assumption.)

If the dispatcher assigns the jobs in a Round-Robin man-
ner, then the first back-end server (S1) sequentially receives
jobs: J1, J3, J5, J7,. . ., J49 at the arrival times above. Likewise,
the second back-end server (S2) receives jobs: J2, J4, J6, J8,. . .,
J50 at the corresponding arrival times. Denoting by RS

k the re-
sponse time of job k at server S, the response times at server S1

are R1
1 = 3, R1

3 = 101, R1
5 = 101, R1

7 = 101, etc. Similarly,
at server S2, R2

2 = 3, R2
4 = 3, R2

6 = 3, etc. Thus, the average
response time for this cluster is:∑24

j=0 R1
2 j+1 + ∑25

j=1 R2
2 j

50

= 3 + ∑24
j=1 101 + ∑25

j=1 3

50
≈ 46.

The poor performance of the Round-Robin policy is due to
job J3, which requires a service time of 100, and is scheduled
by server S1 before the smaller jobs J5, . . . , J49.

Now consider the case where the dispatcher uses a
Size-Range policy for assigning requests to back-end
servers. Assume further that server S1 is assigned jobs requir-
ing service times in excess of 10 time units each, while server
S2 is assigned the smaller jobs. This policy gives rise to the
following assignments: server S1 is assigned job J3, with all
other jobs assigned to server S2. Notice that the load is evenly
distributed between the two servers, each receiving jobs that
require approximately 100 time units of service. Under this
policy, R1

3 = 100, R2
1 = 3, R2

2 = 5, R2
4 = 5, R2

5 = 6, R2
6 = 7,

etc. The average response time is:

R1
3 + R2

1 + R2
2 + ∑50

j=4 R2
j

50

= 100 + 3 + 5 + ∑50
j=4(j + 1)

50
≈ 25.

Here, the long job (J3) and the set of short jobs are assigned
to different servers. However, the average response time is
still large, because server S2 cannot process the short jobs as
fast as they arrive, and so the short jobs must wait longer and
longer to be served.

An average response time of comparable magnitude is also
obtained when the dispatcher uses the JSQ policy. In this case,
server S1 is assigned jobs J1 and J3, while server S2 is assigned
the rest of the jobs. Under this policy, the response times at
server S1 are R1

1 = 3 and R1
3 = 101; and the response times at

server S2 are R2
2 = 3, R2

4 = 3, R2
5 = 4, R2

6 = 5, R2
7 = 6, etc.

The corresponding average response time is:

R1
1 + R1

3 + R2
2 + ∑50

j=4 R2
j

50

= 2 + 101 + 3 + ∑50
j=4(j − 1)

50
≈ 22.

Finally, consider a dispatcher that uses the DAS policy. For
simplicity we considered here the case when θ = 1, meaning
that the dispatcher assigns a job to a server only when the
server becomes idle. In this case, server S1 would be assigned
jobs J1, J4, J6, J8, . . . ,J50, while S2 would be assigned jobs J2,
J5, J7,. . . , J49 and J3, in that order. In this schedule, every short
job is served without delay, whereas the long job is served last,
yielding an average response time of:

R1
1 + ∑25

j=2 R2
2 j + R2

2 + ∑24
j=2 R2

2 j+1 + R2
3

50

= 3 + ∑25
j=2 2 + 3 + ∑24

j=2 2 + 148

50
≈ 5.

60 UNGUREANU ET AL.

This exceptionally low average response time is attained, be-
cause whenever a server becomes idle, the dispatcher has a
small job on hand to assign to it. Consequently, the deferred
assignment of the long job affords short jobs the opportunity
to be served immediately.

4. Experimental performance studies

Recall that the rationale underlying the DAS policy is the
assumption that deferring job assignment enables the dis-
patcher to make better assignment decisions. A case in point
is our motivational example, where DAS yielded significantly
better average response times than policies that use immediate
assignment.

We next show that this assumption comes true for
simulation experiments with various cluster architectures,
driven by a variety of data traces. The experiments were sub-
ject to assumptions 1 and 2, made in Section 3, namely, that
communication times between the dispatcher and back-end
servers are negligible, and the overhead incurred by the
dispatcher to select (job, server) pairs is negligible as well.

The DAS policy used was DAS(2) (i.e., a threshold value
of 2, so that the dispatcher assigns a request to a back-end
server only when the number of jobs there drops below 2).
This ensures that back-end servers are never idle when there
are jobs awaiting processing. The immediate assignment poli-
cies compared with DAS(2) were Round-Robin and JSQ. We
excluded from the study Size-Range policies, because it was
shown in [19] that they are outperformed by JSQ for the traces
used in our study.

We compared these assignment policies via two
performance metrics: response time and slowdown (the ra-
tio between a job’s response time and its service time). More
specifically, the following statistics were used:� Average response times in successive time intervals. The

time horizon was divided into successive time intervals of
fixed length, and the average response time in each such
interval was computed.� Slowdown tail probabilities. Tail probabilities of a random
variable X have the form TX (t) = IP{X > t} (for large t),
where the function TX (t) is the complementary cumulative
distribution function of X . This statistic was selected, be-
cause QoS (Quality of Service) metrics are often stated in
the form IP{S > t∗} ≤ ε∗, where S denotes the slowdown,
and t∗ and ε∗ are prescribed values. Operationally, such a
QoS requires that only a (small) fraction, ε∗, of jobs will
experience a (large) slowdown exceeding an ”acceptable
upper bound”, t∗. We estimate the tail probabilities of the
slowdown, S, in the standard way, by the complementary
cumulative relative frequencies T̂S(t) = nt/N , where N is
the total number of jobs serviced, and nt is the number of
jobs whose slowdown exceeds t .

We experimented with the following two back-end server
architectures:

� MT (Multi-Threaded). In this architecture, a back-end
server spawns multiple threads within a single address
space. A thread serves a request to completion before ac-
cepting a new one.� MP (Multi-Process). In this architecture a back-end server
employs multiple processes. A process serves a request to
completion before accepting a new one. Each process runs
for a predefined time interval (quantum) or until it blocks,
after which the operating system (OS) selects another pro-
cess and runs it.

To contrast the performance of assignment policies under
these two architectures, we assumed non-preemptive (corou-
tine) scheduling for threads, where a thread is allowed to run
until it finishes or blocks [6]. We excluded from consideration
preemptive scheduling, since this would render threads and
processes operationally indistinguishable. We mention that
Apache, the most popular Web server running today [1,12],
uses the MP architecture over UNIX, and the MT architecture
over Microsoft Windows NT.

The simulation results under the two aforementioned
architectures will be presented in Sections 4.1 and 4.2 below.

4.1. Multi-threaded back-end servers

This study used trace data from Internet sites serving the 1998
World Cup. The data used are available on the Internet Traf-
fic Archive (see [2] and http://ita.ee.lbl.gov/html/traces.html).
This repository provides detailed information about the 1.3
billion requests received by World-Cup sites over 92 days—
from April 26, 1998 to July 26, 1998. We mention that Arlitt
and Jin [2] have shown that job sizes from these traces fol-
low a heavy-tail distribution, where a relatively small fraction
of jobs accounts for a relatively large fraction of the overall
load. From this repository, we selected a trace covering over 1
hour from the June 26 data, containing approximately 6 mil-
lion requests. The relevant statistics of this trace are described
next.

4.1.1. Simulation data
Figure 3 depicts the number of requests received by the

World-Cup cluster in successive one-second intervals, while
figure 4 plots the number of bytes requested from the same
cluster in the same time intervals. Figure 5 is essentially a
histogram depicting the logarithm of the number of requests
made for various file sizes in the trace considered.

From each request record in the trace, we extracted only
the request arrival time and the size of the requested file. The
observed arrival rates were on the order of several hundreds
of requests per second, and the recorded time stamps were
rounded off to integer seconds. Consequently, we distributed
request arrivals uniformly over each second. Since no service
time information was recorded, the simulation estimated the
service time as the sum of the (constant) time to establish and
close a connection, and the (variable, size-dependent) time
required to retrieve and transfer a file. The justification for
this estimation method may be found in [17,19,23].

DEFERRED ASSIGNMENT SCHEDULING IN CLUSTER-BASED SERVERS 61

Figure 3. Number of request arrivals per second.

Figure 4. Total bytes requested per second.

The selection of the particular data trace was motivated by
the fact that it exhibits arrival-rate fluctuations corresponding
to light, medium and heavy loadings in this temporal order,
as evidenced by figures 3 and 4. More specifically, the trace
allows us to study the performance of assignment policies
under various loading conditions, as follows:� Light loading. In the time interval [0, 1500], the arrival

rate is relatively low (below 1600 requests/sec), and the
resultant utilization coefficient is relatively low (≈ 40%).� Medium loading. In the time interval [1500, 2000], the
arrival rate is between 1600 and 2000 requests/sec, and the
resultant utilization coefficient is intermediate (≈ 50%).� Heavy loading. In the time interval [2000, 3600], the ar-
rival rate exceeds 2000 requests/sec, and the corresponding
utilization coefficient is relatively high (≈75%). In order
to study the behavior of the slowdown under a heavy load
regime, slowdowns were computed only for the jobs ar-
riving in the heavily-loaded portion of the trace ([2000,
3600]).

Figure 5. File size distribution of arriving requests (notice the logarithmic

scale on the y axis).

Figure 6. Average response time of Round-Robin, JSQ and DAS as function

of time in an MT-cluster.

4.1.2. Simulation experiments
To compare the performance of various assignment policies,
we simulated a cluster of four back-end servers, driven by the
World Cup trace above.

Figure 6 displays average response times in successive
50-second intervals for the three assignment policies consid-
ered, under the MT architecture. Note that loading conditions
vary over these successive intervals as per figures 3 and 4.
Figure 6 shows that DAS(2) improves over Round-Robin in
all time intervals (and therefore, under all simulated loading
conditions) by as much as one order of magnitude.

We next proceed to compare the average response times of
DAS(2) to those of JSQ.� Light loading. JSQ outperforms DAS(2) in the interval [0,

1500]. This behavior is explained by the fact that when the
arrival rate is low, both JSQ and DAS effectively perform
immediate assignment (more precisely, DAS defers jobs
infrequently, since back-end servers are underloaded). In
effect, the dispatcher information used by DAS is of little
value. In contrast, JSQ, which attempts to balance load

62 UNGUREANU ET AL.

Figure 7. Complementary cumulative relative frequencies of slowdowns for

Round-Robin, JSQ and DAS in an MT-cluster.

among back-end servers, uses information from back-end
servers, which proves to be more relevant in this case. To
sum up, under light loading, load-balancing outperforms
deferred assignment.� Medium loading. As the arrival rate and subsequent utiliza-
tion increase in the interval [1500, 2000], the performance
of DAS(2) is comparable to that of JSQ.� Heavy loading. DAS(2) outperforms JSQ in the interval
[2000, 3600] by as much as a factor of two. This behavior
is explained by the fact that under DAS, more jobs wait in
the dispatcher buffer, thereby precipitating more deferred
assignments. To sum up, under heavy loading, deferred
assignment outperforms load-balancing.

Figure 7 plots the complementary cumulative relative fre-
quencies (tail probabilities) of slowdown for the three assign-
ment policies considered, under the MT architecture. Recall
that the lower the value of tail probabilities, the better the per-
formance. We observe that Round-Robin again performed
far worse than the other two policies. For example, under
Round-Robin the probability that a job has a slowdown in
excess of 7 is 0.42, whereas under JSQ and DAS(2), it is less
than 0.12. We also note that DAS(2) performs similarly to
JSQ for slowdowns less than 7, and it outperforms JSQ for
slowdowns in excess of 7, albeit slightly.

4.2. Multi-process back-end servers

For the MP architecture, the simulations used two additional
parameters: process quantum size (set at 5 ms), and context
switch time (set at 0.5 ms). Two configurations were consid-
ered under this architecture: a cluster of four back-end servers,
and a cluster of eight back-end servers. The results of the cor-
responding studies are presented in Sections 4.2.1 and 4.2.2.

4.2.1. Cluster of four back-end servers
This study used the World Cup data trace described in Sec-
tion 4.1.1. Figure 8 displays average response times in succes-

Figure 8. Average response times of Round-Robin, JSQ and DAS as function

of times for an MP-cluster of four back-end servers.

sive 50-second intervals for an MP-cluster under the param-
eter settings above. Interestingly, under the MP-architecture,
DAS(2) outperforms both Round-Robin and JSQ over all
time intervals. The fact that DAS(2) outperforms JSQ even
under light loading may be in part attributed to the (relatively
expensive) context switching overhead, which increases the
CPU load on the cluster. This leads to higher dispatcher buffer
occupancies in DAS, allowing it to make more efficacious as-
signment decisions. In a similar vein, the relative advantage of
DAS(2) over Round-Robin and JSQ increases as the load in-
creases, analogously to the MT-case, though more strikingly.
For heavy loading, DAS(2) outperforms JSQ by at least a fac-
tor of three.

Figure 9 plots the complementary cumulative rela-
tive frequencies (tail probabilities) of slowdown for the
three assignment policies considered, under the MP archi-
tecture. We observe that DAS(2) consistently outperforms
both Round-Robin and JSQ over all slowdown ranges.

Figure 9. Complementary cumulative relative frequencies of slowdowns for

Round-Robin, JSQ and DAS in an MP-cluster of four back-end servers .

DEFERRED ASSIGNMENT SCHEDULING IN CLUSTER-BASED SERVERS 63

Furthermore, DAS(2) outperformed JSQ by a considerably
wider margin than under the MT architecture (as compared to
figure 7). For example, the probability that a job has a slow-
down in excess of 5 is 0.1 under DAS(2), and 0.3 under JSQ.

4.2.2. Cluster of eight back-end servers
This study gauged the performance of JSQ and DAS(2) as the
cluster size grows larger. To this end, we generated a synthetic
trace using a traffic generator, called Geist, designed at Intel
[13,14]. The relevant statistics of this trace are described next.

Simulation data. The trace consists of over 1 million re-
quests received in a time interval of approximately five min-
utes. This trace offered the cluster medium loadings with
utilization in the range 45 to 55%. Figure 10 depicts the
number of requests received by the cluster in successive one-
second intervals, while figure 11 plots the number of bytes
requested from the same cluster in successive one-second
intervals.

Figure 10. Number of request arrivals per second.

Figure 11. Total bytes requested per second.

Figure 12. Average response times of JSQ and DAS as function of times for

an MP-cluster of eight back-end servers.

Figure 13. Complementary cumulative relative frequencies of slowdowns

for JSQ and DAS in an MP-cluster of eight back-end servers.

Simulation Experiments. This experiment compared the
performance of JSQ and DAS(2) (the performance of
Round-Robin is not depicted because it was substantially
worse than both JSQ and DAS(2)). Figure 12 displays aver-
age response times in successive 10-second intervals for an
MP-cluster of eight back-end servers. Observe that DAS(2)
outperforms JSQ in most time intervals. Moreover, the per-
formance advantage of DAS(2) over JSQ in a cluster of eight
back-end servers is comparable to that in a cluster of four
back-end servers.

Figure 13 plots the complementary cumulative relative
frequencies (tail probabilities) of slowdown for the two as-
signment policies considered, for a cluster of eight MP back-
end servers. Observe that DAS(2) consistently outperforms
JSQ for slowdowns exceeding 3. Moreover, for slowdowns
exceeding 7, DAS(2) outperforms JSQ by at least a factor of
two.

64 UNGUREANU ET AL.

4.3. Discussion

The simulation experiments show that DAS outperforms both
Round-Robin and JSQ under medium and heavy loadings in
terms of response time averages and tail probabilities, and this
result holds across architectures and configurations. More-
over, it turns out thatDAS(2) also outperformsAdaptLoad (an
instance of a Size-Range policy) under medium and heavy
loadings offered by the World Cup trace. This follows from
the fact that JSQ outperforms AdaptLoad under this particular
trace [19].

The fact that DAS outperforms JSQ is all the more
remarkable given the difference in the information used by
the two policies. On one hand, DAS requires the dispatcher
to estimate the sizes of incoming jobs, and to monitor the
number of jobs processed by back-end servers (recall that
this information is readily available to the dispatcher). On the
other hand, JSQ requires the dispatcher to track the amount
of residual work at each server, which is much harder to es-
timate. For this reason, JSQ has been rarely, if at all, used in
practice (cf. [17,23]).

These results support the contention that DAS is a practical
assignment policy alternative for cluster computing.

5. Related work

The literature contains a considerable body of work on job
scheduling (see [3,5,9,15,16,18,20] and references therein).
We will briefly review here only size-based assignment poli-
cies. Smith [22] considered scheduling with fixed-size (de-
terministic) jobs on a single server. The paper shows that
in this case, scheduling the shortest jobs first is optimal in
that the policy yields minimal response times. In a similar
vein, Rothkopf [21] shows that this policy yields minimal ex-
pected response times, for job sizes having arbitrary (known)
distributions. Winston [25] considered a cluster-based server
with the first-come first-serve (FCFS) discipline at each server
queue, exponential job-size distributions, and Poisson arrivals.
The paper proves that under these assumptions, the join-the-
shortest-queue (JSQ) policy is optimal (yields minimal ex-
pected response times). However, Whitt [24] showed that
there exist other job-size distributions for which JSQ is not
optimal.

Next we proceed with a review of Size-Range scheduling
policies that consider job sizes that follow a heavy-tail distri-
bution. Harchol-Balter et al. [10] introduce a policy called
“Size Interval Task Assignment with Equal Load” (SITA-E).
The SITA-E policy fits job-size ranges (intervals) to bounded-
Pareto distributions, and then equalizes the expected work.
That is, given n back-end servers, then n size ranges are
determined off-line, such that each range contains approxi-
mately the same amount of work. Ciardo et al. [4] presents
a load-balancing policy, called EquiLoad, similar to SITE-E
in that it also uses predefined ranges. The paper shows that
EquiLoad performs well on World Cup data traces. The main

drawback of SITA-E and EquiLoad is that they assume a
priori knowledge of the job-size distribution. Another policy,
called AdaptLoad, is proposed in [19] as an adaptive, on-
line version of EquiLoad. Again, AdaptLoad assigns each
back-end server to a job-size range, but these ranges are con-
tinually re-evaluated based on the most recent history window
of requested jobs.

Finally, Harchol-Balter et al. [11] use the SRPT (Shortest
Remaining Processing Time) when scheduling for execution
processes at a back-end server. (Under SRPT, the OS of a
back-end server gives priority to processes serving short jobs
or with short remaining processing time.) [11] shows exper-
imentally that SRPT yields better response time performance
than the traditional Round-Robin scheduling of processes. It
is worth pointing out that both DAS and SRPT give priority
to short jobs in order to improve response time performance.
However, there are several major differences in the way they
operate. First, DAS is employed by the dispatcher to assign
jobs to back-end servers, whereas SRPT is employed by the
OS of back-end servers to schedule the processing of jobs al-
ready assigned to them. Consequently, SRPT is more difficult
to implement than DAS, because the former requires operating
system modification, whereas the latter requires only the mod-
ification of the dispatcher application. Secondly, DAS, unlike
SRPT, guarantees that long jobs do not starve. Finally, DAS
provides a degree of resistance to denial-of-service attacks,
while SRPT does not.

6. Conclusion

In this paper, we propose a novel approach to the job
assignment problem, whereby the dispatcher is not forced to
assign jobs to back-end servers upon request arrival; rather,
the dispatcher may defer assignment by waiting to accumu-
late more information to greater advantage. Indeed, we have
shown experimentally that this approach results in excellent
response-time and slowdown performance as compared to
traditional approaches.

These results support our contention that deferral-based
assignment is very effective during traffic surges. For the du-
ration of a surge,DAS gives priority to (many) small jobs, while
the considerably less frequent large jobs are temporarily de-
ferred. The fact that small jobs substantially outnumber large
ones is backed up by empirical evidence suggesting that the
sizes of files traveling on the Internet are heavy-tailed [2,7,8].
Indeed, for the traces considered, files with sizes greater than
30 KB make up less than 3% of the files requested, but account
for over 50% of the transferred data.

A consequence of these results is that a cluster using
DAS is relatively resistant to denial-of-service attacks, which
induce an artificially heavy loading. This is so, because
DAS performance excels under heavy loading. Moreover, be-
cause most incoming jobs are deferred under heavy load-
ing, the dispatcher has the opportunity to examine and
discard malicious jobs before they consume back-end server
resources.

DEFERRED ASSIGNMENT SCHEDULING IN CLUSTER-BASED SERVERS 65

References

[1] The Apache HTTP Server Project, http://httpd.apache.org/

[2] M. Arlitt and T. Jin, Workload characterization of the 1998 World

Cup Web Site, IEEE Network 14(3) (2000) 30–37. Extended version:

Tech Report HPL-1999-35R1, Hewlett-Packard Laboratories, Septem-

ber 1999.

[3] P. Bruckner, Scheduling Algorithms, Third Edition (Springer-Verlag,

2001).

[4] G. Ciardo, A. Riska and E. Smirni, EquiLoad: A load balancing policy

for clustered web servers, Performance Evaluation 46(2/3) (2001) 101–

124.

[5] M. Colajanni, P.S. Yu and D.M. Dias, Analysis of task assignment

policies in scalable distributed web-server systems, IEEE Transactions

on Parallel and Distributed Systems 9(6) (1998).

[6] G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems - Con-
cepts and Design (Addison-Wesley, 2001).

[7] M.E. Crovella, M.S. Taqqu and A. Bestavros, Heavy-tailed probability

distributions in the world wide web, in: A Practical Guide To Heavy
Tails, Chapman Hall, New York, (1998) pp. 3–26.

[8] M. Faloutsos, P. Faloutsos and C. Faloutsos, On power-law relationships

of the internet topology, in: Proceedings of ACM SIGCOMM ’99 (1999)

pp. 251–262.

[9] M. Harchol-Balter, Task Assignment with Unknown Duration, Journal

of the ACM, 49(2) (2002) 260–288. (Extended Abstract, in: Proceed-
ings of the 20th International Conference on Distributed Computing
Systems (ICDCS), Taipei, Taiwan, April 2000).)

[10] M. Harchol-Balter, M.E. Crovella and C.D. Murta, On choosing a task

assignment policy for a distributed server system, in Proceedings of
Performance Tools ’98, Lecture Notes in Computer Science, vol. 1468

(1998) pp. 231–242.

[11] M. Harchol-Balter, B. Schroeder, N. Bansal and M. Agrawal, Size-

based scheduling to improve web performance, ACM Transactions on

Computer Systems 21(2), (2003).

[12] Y. Hu, A. Nanda and Q. Yang, Measurement, analysis and performance

improvement of the apache web server, International Journal of Com-

puters and Their Applications 8(4) (2001) 217–231.

[13] K. Kant, V. Tewari and R. Iyer, Geist: A generator of E-commerce and

Internet Server Traffic, in: Proceedings of IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS),
November (2001) pp. 49–56,.

[14] K. Kant, V. Tewari and R. Iye, Geist: A Web Traffic Generation Tool

Source, in Proceedings of the 12th International Conference on Com-
puter Performance Evaluation, Modeling Techniques and Tools, Lec-

ture Notes In Computer Science, 2324 (2002) 227–232.

[15] M. Katehakis, and C. Melolidakis, On the optimal maintenance of sys-

tems and control of arrivals in queues, Stochastic Analysis and Appli-

cations, 8(2) (1994) 12–25.

[16] M. Pinedo, Scheduling: Theory, Algorithms, and Systems (Prentice Hall,

2002).

[17] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel

and E. Nahum, Locality-aware request distribution in cluster-based net-

work servers. in Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII) (1998).

[18] R. Righter, Scheduling in multiclass networks with deterministic ser-

vice times, Queuing Systems 41(4) (2002) 305–319.

[19] A. Riska, W. Sun, E. Smirni and G. Ciardo, AdaptLoad: Effective bal-

ancing in clustered web servers under transient load conditions, in Pro-
ceedings of the 22nd International Conference on Distributed Comput-
ing Systems (ICDCS’02) (2002).

[20] S.M. Ross, Probability Models for Computer Science. (Academic Press,

2002).

[21] M.H. Rothkopf, Scheduling with random service times. Management

Science 12 (1996) 703–713.

[22] W.E. Smith, Various optimizers for single-stage production, Naval Re-

search Logistics Quarterly, 3 (1956) 59–66.

[23] Y.M. Teo and R. Ayani, Comparison of load balancing strategies on

cluster-based web servers, Simulation, The Journal of the Society for

Modeling and Simulation International 77(5-6) (2001) 185–195.

[24] W. Whitt, Deciding which queue to Join: Some Counter Examples.

Operations Research 34(1) (1986) 55–62.

[25] W. Winston, Optimality of the shortest line discipline, Journal of Ap-

plied Probability 14 (1977) 181–189.

Victoria Ungureanu (ACM) is a visiting re-

searcher at DIMACS. She has a Ph.D. in Computer

Science from Rutgers University.

E-mail: ungurean@research.rutgers.edu

Benjamin Melamed is a Professor II at the Rutgers

Business School- Newark and New Brunswick, De-

partment of MSIS. Melamed received a B.Sc. de-

gree in Mathematics and Statistics from Tel Aviv

University in 1972, and a M.S. and Ph.D. degrees in

Computer Science from the University of Michigan

in 1973 and 1976, respectively. He was awarded an

AT&T Fellow in 1988 and an IEEE Fellow in 1994.

He became an IFIP WG7.3 member in 1997, and

was elected to Beta Gamma Sigma in 1998.

E-mail: melamed@rbs.rutgers.edu

Michael N. Katehakis is Professor of Management

Science in the Department of Management Science

and Information Systems, at Rutgers. He studied at

the University of Athens, Diploma (1974) in Math-

ematics, at the University of South Florida, M.A.

(1978) in Statistics, and at Columbia University,

Ph.D. (1980) in Operations Research. He won the

1992 Wolfowitz Prize (with Govindarajulu Z.)

E-mail: mnk@andromeda.rutgers.edu

Phillip G. Bradford (ACM) is on the faculty in

Computer Science Department at the University of

Alabama. He earned his Ph.D. at Indiana Univer-

sity in Bloomington, his MS at The University of

Kansas and his BS at Rutgers University.

E-mail: pgb@cs.ua.edu

